document.write( "Question 110076: The altitude to the hypotenuse of a right triangle divides the hypotenuse into segments whose lengths are in the ratio 3:2. The length of the altitude is 18 feet.
\n" ); document.write( "Find:
\n" ); document.write( "a.)the length of the hypotenuse in simplest radical form.
\n" ); document.write( "b.)the length of the hypotenuse to the nearest inch.
\n" ); document.write( "c.)the length of each leg of the triangle in simplest radical form.
\n" ); document.write( "d.)the length of each leg of the triangle to the nearest inch.
\n" ); document.write( "

Algebra.Com's Answer #80233 by edjones(8007)\"\" \"About 
You can put this solution on YOUR website!
The hypotenuse is the base of the triangle.
\n" ); document.write( "the altitude divides the 90 deg angle 3:2 also 54:36 deg.
\n" ); document.write( "tan(36)=x/18
\n" ); document.write( "x=18tan(36)=13.0778'
\n" ); document.write( "x=18tan(54)=24.7749'
\n" ); document.write( "hyp=13.0778+24.7749=37.8526'=37'10\"
\n" ); document.write( "short side: 18^2+13.0778^2=495.028
\n" ); document.write( "sqrt(495.028)=22.2492'=22'3\"
\n" ); document.write( "long side: 18^2+24.7749^2=937.794
\n" ); document.write( "sqrt(937.794)=30.6234'=30'7\"
\n" ); document.write( "Check:
\n" ); document.write( "22.2492^2+30.6234^2=1432.82
\n" ); document.write( "sqrt(1432.82)=37.8526' hyp
\n" ); document.write( "Ed
\n" ); document.write( "
\n" );