document.write( "Question 1175082: 18 a Find 1 + 2 + . . . + 24.\r
\n" ); document.write( "\n" ); document.write( "b Show that 1/n, 2/n + ... n/n = (n+1)/2\r
\n" ); document.write( "\n" ); document.write( "c Hence find the sum of the first 300 terms of
\n" ); document.write( "1/1 + 1/2 + 2/2 + 1/3 + 2/3 + 3/3 + 1/4 + 2/4 + 3/4 +4/4 + ....\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #800622 by ikleyn(52793)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "18 \r
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "(a)  Find 1 + 2 + . . . + 24.\r\n" );
document.write( "\r\n" );
document.write( "(b)  Show that 1/n, 2/n + ... n/n = (n+1)/2\r\n" );
document.write( "\r\n" );
document.write( "(c)  Hence find the sum of the first 300 terms of\r\n" );
document.write( "        1/1 + 1/2 + 2/2 + 1/3 + 2/3 + 3/3 + 1/4 + 2/4 + 3/4 +4/4 + ...\r\n" );
document.write( "
~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Well known fact is that the sum of the first n natural numbers\r\n" );
document.write( "\r\n" );
document.write( "1 + 2 + 3 + . . . + n  is equal to  \"%28n%2A%28n%2B1%29%29%2F2\".     (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "For the proof, see the lessons\r\n" );
document.write( "\r\n" );
document.write( "    - Arithmetic progressions\r\n" );
document.write( "\r\n" );
document.write( "    - The proofs of the formulas for arithmetic progressions \r\n" );
document.write( "\r\n" );
document.write( "in this site.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(a)  Therefore,  1 + 2 + 3 + . . . + 24 = \"%2824%2A25%29%2F2\" = 300.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(b)  From the formula (1),\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "         \"1%2Fn\" + \"2%2Fn\" + . . .  + \"n%2Fn\" = \"%281%2Fn%29%2A%28n%28n%2B1%29%2F2%29\" = \"%28n%2B1%29%2F2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(c)  Group the sum in this way\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "         Sum = (1/1) + (1/2 + 2/2) + (1/3 + 2/3 + 3/3) + (1/4 + 2/4 + 3/4 + 4/4) + . . .       (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     We have 300 terms/addends in all and the number of terms in k-th separate parentheses is k.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Referring to the previous part (b) of this problem, we conclude that there are 24 groups in parentheses in the sum (2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Each particular group (k-th group) has the sum equal to \"%28k%2B1%29%2F2\", according to part (b) of the solution.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     In other words,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "         Sum = \"sum%28%28k%2B1%29%2F2%2C+k=1%2C+24%29\" = \"%281%2F2%29%2A%28sum%28%28k%2B1%29%2C+k=1%2C+24%29%29\" = \"%281%2F2%29%2A%282+%2B+3+%2B+ellipsis+%2B+25%29\" = \"%281%2F2%29%2A%28%2825%2A26%29%2F2-1%29\" = \"%281%2F2%29%2A%28650-1%29\" = \"649%2F2\" = 324 \"1%2F2\" = 324.5.    ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Post-solution note\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "         In this problem,  its separate parts  (a),  (b)  and  (c)  are logically inter-connected.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );