document.write( "Question 1175030: Consider a population that grows according to the recursive rule Pn = Pn-1+60, with initial population Po=60.
\n" ); document.write( "Then
\n" ); document.write( "P1=
\n" ); document.write( "P2=\r
\n" ); document.write( "\n" ); document.write( "Find an explicit formula for the population. The formula should involve n (lower case n)
\n" ); document.write( "Pn=\r
\n" ); document.write( "\n" ); document.write( "Use the explicit formula to find P100
\n" ); document.write( "P100=
\n" ); document.write( "

Algebra.Com's Answer #800558 by ikleyn(52847)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "This sequence is well known ARITHMETIC progression\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "with the first term of 60 and the common difference of 60.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Simply, the numeration is shifted one unit to the left and starts from 0 (very first term) instead of traditional 1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The formula for the n-th term (accounting for the accepted numeration) is\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    P(n) = 60 + n*60 = (n+1)*60,   n = 0, 1, 2, 3, . . . \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To find any term (1st, 2nd, . . . , 100th), substitute the index value to the formula.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "P1 = 120;  P2 = 180;   P100 = 101*60 = 6060.      ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For introductory lessons on arithmetic progressions see \r
\n" ); document.write( "\n" ); document.write( "    - Arithmetic progressions\r
\n" ); document.write( "\n" ); document.write( "    - The proofs of the formulas for arithmetic progressions \r
\n" ); document.write( "\n" ); document.write( "    - Problems on arithmetic progressions \r
\n" ); document.write( "\n" ); document.write( "    - Word problems on arithmetic progressions\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also,  you have this free of charge online textbook in ALGEBRA-II in this site\r
\n" ); document.write( "\n" ); document.write( "    - ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \"Arithmetic progressions\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Save the link to this textbook together with its description\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-II
\n" ); document.write( "https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "into your archive and use when it is needed.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );