document.write( "Question 1174921: The total profit function,​ P(x), for a company producing x thousand units is given by P(x)=−2x^2+38x−120. Find the values of x for which the company makes a profit. [Hint: The company makes a profit when P(x)>0.] Explain and justify your answer. \n" ); document.write( "
Algebra.Com's Answer #800459 by ikleyn(52782)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "    P(x) = −2x^2 + 38x − 120 = -2*(x^2 - 19x + 60) = -2*(x - 4)(x-15)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    P(4) = 0  and P(15) = 0     4 ≤  x  ≤ 15   will either break even or show a profit\r\n" );
document.write( "\r\n" );
document.write( "    \r\n" );
document.write( "    P(9.5) shows the maximum profit.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \r\n" );
document.write( "\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Find several important differences from the post by @ewatrrr.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );