document.write( "Question 1173597: Ely wants to enclose a rectangular garden using 150 meters fencing material. What are the dimensions of the rectangle that will maximize the area of the rectangular garden? \n" ); document.write( "
Algebra.Com's Answer #798839 by ikleyn(52792)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The rectangle, which encloses the maximum area at given perimeter, is a square,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "and its size is the quarter of the given perimeter, i.e.  \"150%2F4\" = 37.5 meters.   ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "On rectangle enclosing the maximum area, see the lessons\r
\n" ); document.write( "\n" ); document.write( "    - A rectangle with a given perimeter which has the maximal area is a square\r
\n" ); document.write( "\n" ); document.write( "    - A farmer planning to fence a rectangular garden to enclose the maximal area\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );