document.write( "Question 1173368: Name the curve and find the rectangular form for the parametric equations.?
\n" ); document.write( "The equations are: \r
\n" ); document.write( "\n" ); document.write( "x(t)= 1/√t+1 and y(t)=t/t+1 \r
\n" ); document.write( "\n" ); document.write( "t ≠ -1
\n" ); document.write( "

Algebra.Com's Answer #798589 by ikleyn(52834)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "From  x = \"1%2Fsqrt%28t%2B1%29\",  you get, squaring,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    x^2 = \"1%2F%28t%2B1%29\",\r\n" );
document.write( "\r\n" );
document.write( "    x^2*(t+1) = 1\r\n" );
document.write( "\r\n" );
document.write( "    x^2*t + x^2 = 1\r\n" );
document.write( "\r\n" );
document.write( "    x^2*t = 1 - x^2\r\n" );
document.write( "\r\n" );
document.write( "    t = \"%281-x%5E2%29%2Fx%5E2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now substitute it into the expression for y = \"t%2F%28t%2B1%29\".  You will get\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    y = \"%281-x%5E2%29%2Fx%5E2%29\" : \"%28%281-x%5E2%29%2Fx%5E2+%2B+1%29\" = \"%281-x%5E2%29%2Fx%5E2%29\" : \"1%2Fx%5E2\" = 1- x^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the curve is the parabola\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    y = 1- x^2.      ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );