document.write( "Question 1172550: The polynomial f(x)=x^3-x^2-6kx+4k^2 where k is a constant has (x-3)as a factor. Find the possible values of k and for the integral value of k find the remainder when f(x) is divided by x+2. \n" ); document.write( "
Algebra.Com's Answer #797620 by ikleyn(52790)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "The polynomial f(x)=x^3-x^2-6kx+4k^2 where k is a constant has (x-3) as a factor. \r \n" ); document.write( "\n" ); document.write( "(a) Find the possible values of k and \r \n" ); document.write( "\n" ); document.write( "(b) for the \n" ); document.write( "~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "According to the Remainder theorem, the fact that the polynomial f(x) = x^3 - x^2 - 6kx + 4k^2 has (x-3) as a factor\r\n" ); document.write( "\r\n" ); document.write( "means that the value of x= 3 is the root of the polynomial.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It gives this equation for k\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " f(3) = 0 = 3^3 - 3^2 - 6*3*k + 4k^2, or\r\n" ); document.write( "\r\n" ); document.write( " 4k^2 - 18k + 18 = 0, which is equivalent to\r\n" ); document.write( "\r\n" ); document.write( " 2k^2 - 9k + 9 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The roots of the equation are (use the quadratic formula) k= 4 and k=\r \n" ); document.write( "\n" ); document.write( "Solved. // All questions are answered.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Theorem (the remainder theorem)\r \n" ); document.write( "\n" ); document.write( " 1. The remainder of division the polynomial \n" ); document.write( "\n" ); document.write( " 2. The binomial \n" ); document.write( "\n" ); document.write( " 3. The binomial \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "See the lessons\r \n" ); document.write( "\n" ); document.write( " - Divisibility of polynomial f(x) by binomial x-a and the Remainder theorem\r \n" ); document.write( "\n" ); document.write( " - Solved problems on the Remainder thoerem\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \n" ); document.write( "\"Divisibility of polynomial f(x) by binomial (x-a). The Remainder theorem\".\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this online textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-I \n" ); document.write( "https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "to your archive and use it when it is needed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |