document.write( "Question 1172442: Find the range of the function
\n" ); document.write( "f(x) = {x^2 + 14x + 9}/{x^2 + 2x + 3}, as x varies over all real numbers.\r
\n" ); document.write( "\n" ); document.write( "Thanks!
\n" ); document.write( "

Algebra.Com's Answer #797470 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "f(x) = (x^2 + 14x + 9)/(x^2 + 2x + 3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let
\n" ); document.write( "g(x) = x^2 + 14x + 9
\n" ); document.write( "h(x) = x^2 + 2x + 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Those two other functions are set up such that
\n" ); document.write( "f(x) = g(x)/h(x)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This way we can apply the quotient rule
\n" ); document.write( "f(x) = g(x)/h(x)
\n" ); document.write( "f ' (x) = [ g'(x)*h(x) - g(x)*h'(x) ]/[ (h(x))^2 ]\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's compute each derivative piece
\n" ); document.write( "g(x) = x^2 + 14x + 9
\n" ); document.write( "g'(x) = 2x + 14
\n" ); document.write( "and
\n" ); document.write( "h(x) = x^2 + 2x + 3
\n" ); document.write( "h'(x) = 2x + 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Allowing us to get
\n" ); document.write( "f ' (x) = [ g'(x)*h(x) - g(x)*h'(x) ]/[ (h(x))^2 ]
\n" ); document.write( "f ' (x) = [ (2x+14)*(x^2+2x+3) - (x^2+14x+9)*(2x+2) ]/[ (x^2+2x+3)^2 ]
\n" ); document.write( "f ' (x) = [ 2x^3+18x^2+34x+42 - (2x^3+30x^2+46x+18) ]/[ (x^2+2x+3)^2 ]
\n" ); document.write( "f ' (x) = [ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ]\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solve the derivative equal to 0 to solve for x
\n" ); document.write( "Since the denominator cannot be zero, this means the numerator must be 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "f ' (x) = 0
\n" ); document.write( "[ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ] = 0
\n" ); document.write( "-12x^2 - 12x + 24 = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Apply the quadratic formula to find the roots are
\n" ); document.write( "x = -2 and x = 1
\n" ); document.write( "I'll skip showing these steps\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now set up a sign chart. Draw a number line. Plot -2 and 1 on the number line. Mark the points as A and B.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We'll need to test three regions:
\n" ); document.write( "1) The region to the left of A
\n" ); document.write( "2) The region between A and B
\n" ); document.write( "3) The region to the right of B
\n" ); document.write( "by \"test\", I mean determine the sign of f ' (x) for these regions. As you can probably guess by now, I'm going to use the first derivative test.
\n" ); document.write( "The second derivative test is an alternative option, but it requires calculating the second derivative which is going to be a bit of a pain. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's just stick with the first derivative test.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Focus on the region to the left of point A, ie the region to the left of x = -2.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The value x = -3 is one possible test value. Plug this into f ' (x)
\n" ); document.write( "f ' (x) = [ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ]
\n" ); document.write( "f ' (-3) = [ -12(-3)^2 - 12(-3) + 24 ]/[ ((-3)^2+2(-3)+3)^2 ]
\n" ); document.write( "f ' (-3) = -1.33
\n" ); document.write( "Which is approximate.
\n" ); document.write( "The actual value doesn't matter. All we're after is whether f ' (x) is positive or negative.
\n" ); document.write( "Since f ' (x) is negative, this means f(x) is decreasing on the interval \"-infinity+%3C+x+%3C+-2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now test the region between A and B, so the region between x = -2 and x = 1. The value x = 0 is a good candidate.
\n" ); document.write( "f ' (x) = [ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ]
\n" ); document.write( "f ' (0) = [ -12(0)^2 - 12(0) + 24 ]/[ ((0)^2+2(0)+3)^2 ]
\n" ); document.write( "f ' (0) = 2.667
\n" ); document.write( "Also approximate.
\n" ); document.write( "The result here is positive.
\n" ); document.write( "So f(x) is increasing on the interval \"-2+%3C+x+%3C+1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The change from decreasing to increasing through \"x+=+-2\" indicates we have a local minimum here. Check out the graph below and it visually confirms this.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The last region to check is everything to the right of B, so when x > 1
\n" ); document.write( "I'll pick x = 2
\n" ); document.write( "f ' (x) = [ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ]
\n" ); document.write( "f ' (2) = [ -12(2)^2 - 12(2) + 24 ]/[ ((2)^2+2(2)+3)^2 ]
\n" ); document.write( "f ' (2) = -0.397
\n" ); document.write( "Approximately.
\n" ); document.write( "We get a negative value.
\n" ); document.write( "f(x) is decreasing on the interval \"1+%3C+x+%3C+infinity\"
\n" ); document.write( "The change from increasing (previous interval) to decreasing shows we have a local max.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To summarize:
\n" ); document.write( "x = -2 leads to a local min
\n" ); document.write( "x = 1 leads to a local max\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug each of these values into the original f(x) function to find the actual local min and local max\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Local Min:
\n" ); document.write( "f(x) = (x^2 + 14x + 9)/(x^2 + 2x + 3)
\n" ); document.write( "f(-2) = ((-2)^2 + 14(-2) + 9)/((-2)^2 + 2(-2) + 3)
\n" ); document.write( "f(-2) = -5
\n" ); document.write( "The lowest f(x) can go is f(x) = -5. We can say \"-5+%3C=+y\" where y = f(x)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Local Max:
\n" ); document.write( "f(x) = (x^2 + 14x + 9)/(x^2 + 2x + 3)
\n" ); document.write( "f(1) = ((1)^2 + 14(1) + 9)/((1)^2 + 2(1) + 3)
\n" ); document.write( "f(1) = 4
\n" ); document.write( "The highest f(x) can go is f(x) = 4. We can say \"y+%3C=+4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Combine \"-5+%3C=+y\" with \"y+%3C=+4\", ie overlap the two intervals (use a number line if needed), and we get \"-5+%3C=+y+%3C=+4\" which represents the range\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In short, the range is any real number between -5 and 4, including both endpoints. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The graph below visually confirms this
\n" ); document.write( "
\n" ); document.write( "Side note: The horizontal asymptote is y = 1, which can be determined through applying a limit as x goes to either infinity.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: Range is \"-5+%3C=+y+%3C=+4\"
\n" ); document.write( "
\n" );