document.write( "Question 1172442: Find the range of the function
\n" );
document.write( "f(x) = {x^2 + 14x + 9}/{x^2 + 2x + 3}, as x varies over all real numbers.\r
\n" );
document.write( "\n" );
document.write( "Thanks! \n" );
document.write( "
Algebra.Com's Answer #797470 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "f(x) = (x^2 + 14x + 9)/(x^2 + 2x + 3)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let \n" ); document.write( "g(x) = x^2 + 14x + 9 \n" ); document.write( "h(x) = x^2 + 2x + 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Those two other functions are set up such that \n" ); document.write( "f(x) = g(x)/h(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This way we can apply the quotient rule \n" ); document.write( "f(x) = g(x)/h(x) \n" ); document.write( "f ' (x) = [ g'(x)*h(x) - g(x)*h'(x) ]/[ (h(x))^2 ]\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's compute each derivative piece \n" ); document.write( "g(x) = x^2 + 14x + 9 \n" ); document.write( "g'(x) = 2x + 14 \n" ); document.write( "and \n" ); document.write( "h(x) = x^2 + 2x + 3 \n" ); document.write( "h'(x) = 2x + 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Allowing us to get \n" ); document.write( "f ' (x) = [ g'(x)*h(x) - g(x)*h'(x) ]/[ (h(x))^2 ] \n" ); document.write( "f ' (x) = [ (2x+14)*(x^2+2x+3) - (x^2+14x+9)*(2x+2) ]/[ (x^2+2x+3)^2 ] \n" ); document.write( "f ' (x) = [ 2x^3+18x^2+34x+42 - (2x^3+30x^2+46x+18) ]/[ (x^2+2x+3)^2 ] \n" ); document.write( "f ' (x) = [ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ]\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solve the derivative equal to 0 to solve for x \n" ); document.write( "Since the denominator cannot be zero, this means the numerator must be 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f ' (x) = 0 \n" ); document.write( "[ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ] = 0 \n" ); document.write( "-12x^2 - 12x + 24 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Apply the quadratic formula to find the roots are \n" ); document.write( "x = -2 and x = 1 \n" ); document.write( "I'll skip showing these steps\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now set up a sign chart. Draw a number line. Plot -2 and 1 on the number line. Mark the points as A and B.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll need to test three regions: \n" ); document.write( "1) The region to the left of A \n" ); document.write( "2) The region between A and B \n" ); document.write( "3) The region to the right of B \n" ); document.write( "by \"test\", I mean determine the sign of f ' (x) for these regions. As you can probably guess by now, I'm going to use the first derivative test. \n" ); document.write( "The second derivative test is an alternative option, but it requires calculating the second derivative which is going to be a bit of a pain. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's just stick with the first derivative test.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Focus on the region to the left of point A, ie the region to the left of x = -2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The value x = -3 is one possible test value. Plug this into f ' (x) \n" ); document.write( "f ' (x) = [ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ] \n" ); document.write( "f ' (-3) = [ -12(-3)^2 - 12(-3) + 24 ]/[ ((-3)^2+2(-3)+3)^2 ] \n" ); document.write( "f ' (-3) = -1.33 \n" ); document.write( "Which is approximate. \n" ); document.write( "The actual value doesn't matter. All we're after is whether f ' (x) is positive or negative. \n" ); document.write( "Since f ' (x) is negative, this means f(x) is decreasing on the interval \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now test the region between A and B, so the region between x = -2 and x = 1. The value x = 0 is a good candidate. \n" ); document.write( "f ' (x) = [ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ] \n" ); document.write( "f ' (0) = [ -12(0)^2 - 12(0) + 24 ]/[ ((0)^2+2(0)+3)^2 ] \n" ); document.write( "f ' (0) = 2.667 \n" ); document.write( "Also approximate. \n" ); document.write( "The result here is positive. \n" ); document.write( "So f(x) is increasing on the interval \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The change from decreasing to increasing through \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The last region to check is everything to the right of B, so when x > 1 \n" ); document.write( "I'll pick x = 2 \n" ); document.write( "f ' (x) = [ -12x^2 - 12x + 24 ]/[ (x^2+2x+3)^2 ] \n" ); document.write( "f ' (2) = [ -12(2)^2 - 12(2) + 24 ]/[ ((2)^2+2(2)+3)^2 ] \n" ); document.write( "f ' (2) = -0.397 \n" ); document.write( "Approximately. \n" ); document.write( "We get a negative value. \n" ); document.write( "f(x) is decreasing on the interval \n" ); document.write( "The change from increasing (previous interval) to decreasing shows we have a local max.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To summarize: \n" ); document.write( "x = -2 leads to a local min \n" ); document.write( "x = 1 leads to a local max\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug each of these values into the original f(x) function to find the actual local min and local max\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Local Min: \n" ); document.write( "f(x) = (x^2 + 14x + 9)/(x^2 + 2x + 3) \n" ); document.write( "f(-2) = ((-2)^2 + 14(-2) + 9)/((-2)^2 + 2(-2) + 3) \n" ); document.write( "f(-2) = -5 \n" ); document.write( "The lowest f(x) can go is f(x) = -5. We can say \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Local Max: \n" ); document.write( "f(x) = (x^2 + 14x + 9)/(x^2 + 2x + 3) \n" ); document.write( "f(1) = ((1)^2 + 14(1) + 9)/((1)^2 + 2(1) + 3) \n" ); document.write( "f(1) = 4 \n" ); document.write( "The highest f(x) can go is f(x) = 4. We can say \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Combine \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In short, the range is any real number between -5 and 4, including both endpoints. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The graph below visually confirms this \n" ); document.write( " ![]() \n" ); document.write( "Side note: The horizontal asymptote is y = 1, which can be determined through applying a limit as x goes to either infinity.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: Range is |