.
\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is well known, obvious and self-evident fact that every degree
gives the remainder 1, when is divided by (n-1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, the sum n + 2n^2 + 3n^3 + . . . + 2019n^2019 gives the remainder\r\n" );
document.write( "\r\n" );
document.write( " 1 + 2 + 3 + . . . + 2019\r\n" );
document.write( "\r\n" );
document.write( "when is divided by (n-1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In turn, the sum 1 + 2 + 3 + . . . + 2019 is the sum of the first 2019 natural numbers, and, therefore, is equal to \r\n" );
document.write( "\r\n" );
document.write( "
=
= 1010*2019.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The number 1010*2019 has THIS DECOMPOSITION into the product of prime numbers\r\n" );
document.write( "\r\n" );
document.write( " 1010*2019 = (2*5*101)*(3*673).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, its decomposition is the product of 5 prime numbers with multiplicities 1 for each participating prime.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, the number of divisors of the number 1 + 2 + 3 + . . . 2019 = 1010*2019 is \r\n" );
document.write( "\r\n" );
document.write( " (1+1)*(1+1)*(1+1)*(1+1)*1+1) = 2*2*2*2*2 =
= 32.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Each such divisor is the potential number (n-1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "THEREFORE, the answer to the problem's question is 32.\r\n" );
document.write( "
\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Solved.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "