document.write( "Question 1172317: If n = (p1 )^α1 .(p2)^α2.(p3)^α3 .(p4)^α4 .....(pr)^αr where p1 , p2,
\n" ); document.write( "p3 , ...., pr are distinct prime numbers then prove the following result:\r
\n" ); document.write( "\n" ); document.write( "d(n) = infinite product of (αi + 1) [Note: Here ^ means power]
\n" ); document.write( "

Algebra.Com's Answer #797314 by ikleyn(52787)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The post is written incorrectly.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Had the post be written correctly,  d(n)  would be a finite product, and  d(n)  would be called  (be referred) \r
\n" ); document.write( "\n" ); document.write( "as the number of divisors of the number  n, including 1 and the number n itself.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "See the lesson\r
\n" ); document.write( "\n" ); document.write( "    - Problems on divisors of a given number \r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );