document.write( "Question 1172317: If n = (p1 )^α1 .(p2)^α2.(p3)^α3 .(p4)^α4 .....(pr)^αr where p1 , p2,
\n" );
document.write( "p3 , ...., pr are distinct prime numbers then prove the following result:\r
\n" );
document.write( "\n" );
document.write( "d(n) = infinite product of (αi + 1) [Note: Here ^ means power] \n" );
document.write( "
Algebra.Com's Answer #797314 by ikleyn(52787)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The post is written incorrectly.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Had the post be written correctly, d(n) would be a finite product, and d(n) would be called (be referred) \r \n" ); document.write( "\n" ); document.write( "as the number of divisors of the number n, including 1 and the number n itself.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "See the lesson\r \n" ); document.write( "\n" ); document.write( " - Problems on divisors of a given number \r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |