document.write( "Question 1172300: Given that x^2 - 11x + 28 is a factor of x^4 + k(x^3) - 67(x^2) + 394x - 504, evaluate the sum of the four roots of the equation x^4 + k(x^3) - 67(x^2) + 394x - 504 = 0 \n" ); document.write( "
Algebra.Com's Answer #797289 by ikleyn(52798)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "(1) x^2 - 11x + 28 = factoring = (x-7)*(x-4). (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "(2) You are given that \r\n" ); document.write( "\r\n" ); document.write( " x^2 - 11x + 28 is a factor of x^4 + k(x^3) - 67(x^2) + 394x - 504.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " It means that each factor of (1), (x-7) and (x-4) are factors of the polynomial \r\n" ); document.write( "\r\n" ); document.write( " p(x) = x^4 + k(x^3) - 67(x^2) + 394x - 504. (2) \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "(3) In turn, due to the remainder theorem, it means that the value of x= 4 (as well as the value of x= 7) \r\n" ); document.write( "\r\n" ); document.write( " is the root of the polynomial (2). It gives you an equation for k\r\n" ); document.write( "\r\n" ); document.write( " p(4) = 0 = 4^4 + k*4^3 - 67*4^2 + 394*4 - 504.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " It is the same as\r\n" ); document.write( "\r\n" ); document.write( " 256 + 64k = 0,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " which implies k = -256/64 = -4.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " So, k = -4.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "(4) The sum of the roots of the equation \r\n" ); document.write( "\r\n" ); document.write( " x^4 + k(x^3) - 67(x^2) + 394x - 504 = 0 (3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " is equal to the coefficient value at x^3 with the opposite sign (the Vieta's theorem).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " It means that the sum of the roots of the equation (3) is equal to -k = 4.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. The sum of the roots of the equation x^4 + k(x^3) - 67(x^2) + 394x - 504 = 0 is equal to 4.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " * * * The miracle is that I answered the problem's question WITHOUT solving equation (3). * (!) * (!) * \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |