document.write( "Question 1171802: use the inference rules, replacement rules, indirect proof and/or conditional proof to derive the conclusion.\r
\n" );
document.write( "\n" );
document.write( "1. F ⊃ ~U
\n" );
document.write( "2. ~F ⊃ P
\n" );
document.write( "3. F v ~F/~U v P
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #797257 by Edwin McCravy(20065) You can put this solution on YOUR website! \r\n" ); document.write( "It's immediate if you can use Constructive Dilemma, which is this:\r\n" ); document.write( "[(p ⊃ q) & (r ⊃ s) & (p v r)] ⊃ (q v s) \r\n" ); document.write( "\r\n" ); document.write( "But here's how to prove it WITHOUT using Constructive Dilemma.\r\n" ); document.write( "\r\n" ); document.write( " 1. F ⊃ ~U\r\n" ); document.write( " 2. ~F ⊃ P\r\n" ); document.write( " 3. F v ~F / ~U v P\r\n" ); document.write( "\r\n" ); document.write( " | 4. ~(~U v P) Assumption for Indirect Proof\r\n" ); document.write( " | 5. ~~U & ~P 4, DeMorgan's Law\r\n" ); document.write( " | 6. U & ~P 5, Double Negation\r\n" ); document.write( " | 7. U 6, Simplification \r\n" ); document.write( " | 8. ~F 1,7 Modus Tollens\r\n" ); document.write( " | 9. ~P & U 6, Commutation\r\n" ); document.write( " |10. ~P 9, Simplification\r\n" ); document.write( " |11. ~~F 2,10 Modus Tollens\r\n" ); document.write( " |12. F 11, Double Negation\r\n" ); document.write( " |13. ~F & ~~F 12,11 Conjunction\r\n" ); document.write( " |14. ~F & F 13, Double Negation\r\n" ); document.write( " |15. ~(F v ~F) 14, DeMorgan's Law\r\n" ); document.write( " |16. (F v ~F) & ~(F v ~F) 3,15 Conjunction\r\n" ); document.write( "17. ~U v P Lines 4-16 Indirect Proof \r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |