document.write( "Question 1172165: Find the exact values of sin(2u), cos(2u), and tan(2u) using the double-angle formulas.\r
\n" );
document.write( "\n" );
document.write( "csc(u) = 6, 0 < u < 𝜋/2\r
\n" );
document.write( "\n" );
document.write( "sin(2u) =
\n" );
document.write( "
\n" );
document.write( "cos(2u) =
\n" );
document.write( "
\n" );
document.write( "tan(2u) = \n" );
document.write( "
Algebra.Com's Answer #797089 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! sin 2u=2 sin u cos u; \n" ); document.write( "csc u =6, sin u =1/6, u=9.59 degrees \n" ); document.write( "cos u has to be sqrt(35)/6 \n" ); document.write( "sin 2u=2 sqrt(35)/36=sqrt(35)/18 \n" ); document.write( "-------------- \n" ); document.write( "cos (2u)=cos ^2 u-sin^2 u \n" ); document.write( "=(35/36)-(1/36)=17/18 \n" ); document.write( "--------------- \n" ); document.write( "tan 2u= sin 2u / cos 2u \n" ); document.write( "=sqrt(35)/17 \n" ); document.write( "or 2 tan (u)/1-tan^2 (u) \n" ); document.write( "where tan u = 1/sqrt(35)=sqrt(35)/35 \n" ); document.write( "so 2 sqrt(35)/35/1-35/35^2; the denominator is (35^2-35/35^2) \n" ); document.write( "this will become 2 sqrt(35)*35/1190, and that is 2 sqrt(35)/34 or sqrt(35)/17), same as above. sin u/ cos u is easier, since those have already been obtained. \n" ); document.write( " |