\n" );
document.write( "1. A v B Premise
\n" );
document.write( "2. A <--> (C & D) Premise
\n" );
document.write( "3. B --> (D & G) Premise
\n" );
document.write( "::4. A Conditional Proof (CP) assumption #1
\n" );
document.write( "::5. (A --> (C & D)) & ((C & D) --> A) 2 Biconditional Equivalence (not sure of proper term)
\n" );
document.write( "::6. (A --> (C & D)) 5 Simplification (SIMP)
\n" );
document.write( "::7. C & D 6,4 Modus Ponens (MP)
\n" );
document.write( "::8. D 7 SIMP
\n" );
document.write( "::9. A --> D 4-8, CP
\n" );
document.write( "::9. B CP assumption #2
\n" );
document.write( "::10. D & G 3,9 MP
\n" );
document.write( "::11. D 10 SIMP
\n" );
document.write( "::12. B --> D 9-11 CP
\n" );
document.write( "::13. (A v B) --> D 4-12 CP Proof By Cases (PBC)
\n" );
document.write( "14. (A v B) --> D 4-13 CP (discharges CP assumptions)
\n" );
document.write( "15. D 14,1 MP \r
\n" );
document.write( "\n" );
document.write( "What does this proof do? Lines 4-8 show if we assume A true, D is true (if A then D). Lines 9-13 show \"if B then D\", therefore \"if (A v B) then D\" is true because we've covered the two possible cases (A true or B true) and we promote that result on line 14. Line 15 follows from the premise on line 1.
\n" );
document.write( "
\n" );
document.write( "