document.write( "Question 1171865:
\n" );
document.write( "
\n" );
document.write( "Use the sample data and confidence level given below to complete parts (a) through (d).
\n" );
document.write( "A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll,
\n" );
document.write( "n=943 and x=579 who said \"yes.\" Use a 99% confidence level.\r
\n" );
document.write( "\n" );
document.write( "a) Find the best point estimate of the population proportion p.
\n" );
document.write( "b)Identify the value of the margin of error E.
\n" );
document.write( "c) Construct the confidence interval. \n" );
document.write( "
Algebra.Com's Answer #796786 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( "Part (a) \n" ); document.write( "The best estimate for the population proportion p is the sample proportion phat (read as \"p-hat\")\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In this case, \n" ); document.write( "phat = (number of yes responses)/(number total) \n" ); document.write( "phat = x/n \n" ); document.write( "phat = 579/943 \n" ); document.write( "phat = 0.61399787910922 \n" ); document.write( "phat = 0.614 \n" ); document.write( "Which is approximate.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==================================================== \n" ); document.write( "Part (b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "At 99% confidence, the z critical value is roughly z = 2.576\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The margin of error is \n" ); document.write( "E = z*sqrt(phat*(1-phat)/n) \n" ); document.write( "E = 2.576*sqrt(0.61399787910922*(1-0.61399787910922)/943) \n" ); document.write( "E = 0.040838360004 \n" ); document.write( "E = 0.04 \n" ); document.write( "This is approximate. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==================================================== \n" ); document.write( "Part (c)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll use the results of parts (a) and (b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The lower boundary L of the confidence interval is \n" ); document.write( "L = (center) - (margin of error) \n" ); document.write( "L = (phat) - (E) \n" ); document.write( "L = 0.61399787910922 - 0.040838360004 \n" ); document.write( "L = 0.57315951910522 \n" ); document.write( "L = 0.5732\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "And the upper boundary U is \n" ); document.write( "L = (center) + (margin of error) \n" ); document.write( "L = (phat) + (E) \n" ); document.write( "L = 0.61399787910922 + 0.040838360004 \n" ); document.write( "L = 0.65483623911322 \n" ); document.write( "L = 0.6548\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The 99% confidence interval in the form L < p < U is roughly 0.5732 < p < 0.6548\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We can write this as (0.5732, 0.6548)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We are 99% confident that the population proportion p is between 0.5732 and 0.6548 \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |