document.write( "Question 1171816: In the diagram, Line AB=Line AC, angle A= 60 degrees. If Line AD = 1/4 Line AC, and AE:EB=K:5, find the value of k, with all values in cm.\r
\n" ); document.write( "\n" ); document.write( "A) 5
\n" ); document.write( "B) 2
\n" ); document.write( "C) 10
\n" ); document.write( "D) 2 1/2
\n" ); document.write( "E) 3 1/2\r
\n" ); document.write( "\n" ); document.write( "https://ibb.co/K55rshc
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #796724 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "We're given that AB = AC, so triangle ABC is isosceles. This means the base angles B and C are congruent, as they are the base angles. Let y = angle B = angle C.
\n" ); document.write( "We're also given angle A is 60 degrees.
\n" ); document.write( "So,
\n" ); document.write( "A+B+C = 180
\n" ); document.write( "60+y+y = 180
\n" ); document.write( "2y+60 = 180
\n" ); document.write( "2y = 180-60
\n" ); document.write( "2y = 120
\n" ); document.write( "y = 120/2
\n" ); document.write( "y = 60
\n" ); document.write( "Each angle of triangle ABC is 60 degrees, so triangle ABC is equilateral.
\n" ); document.write( "This tells us that AB = BC = AC.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Draw a line from E to C
\n" ); document.write( "
\n" ); document.write( "We have similar triangles ADE and EDC
\n" ); document.write( "This means we can form the proportion
\n" ); document.write( "AD/DE = DE/DC
\n" ); document.write( "and that can be rearranged into
\n" ); document.write( "DE = sqrt(AD*DC)
\n" ); document.write( "This shows DE is the geometric mean of AD and DC\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let x = AD
\n" ); document.write( "Since AD is 1/4 the length of AC, we know that AC is 4 times longer compared to AD, so AC = 4*AD = 4x
\n" ); document.write( "This leads to
\n" ); document.write( "AD+DC = AC
\n" ); document.write( "x+DC = 4x
\n" ); document.write( "DC = 4x-x
\n" ); document.write( "DC = 3x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Applying the geometric mean formula gets us
\n" ); document.write( "DE = sqrt(AD*DC)
\n" ); document.write( "DE = sqrt(x*3x)
\n" ); document.write( "DE = sqrt(3x^2)
\n" ); document.write( "This simplifies to x*sqrt(3), but we won't need to do this\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "With AD = x and DE = sqrt(3x^2), we can find AE through the pythagorean theorem
\n" ); document.write( "(AD)^2 + (DE)^2 = (AE)^2
\n" ); document.write( "(x)^2 + (sqrt(3x^2))^2 = (AE)^2
\n" ); document.write( "x^2+3x^2 = (AE)^2
\n" ); document.write( "4x^2 = (AE)^2
\n" ); document.write( "(AE)^2 = 4x^2
\n" ); document.write( "AE = sqrt(4x^2)
\n" ); document.write( "AE = sqrt((2x)^2)
\n" ); document.write( "AE = 2x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now we can say
\n" ); document.write( "AE+EB = AB
\n" ); document.write( "2x+EB = 4x
\n" ); document.write( "EB = 4x-2x
\n" ); document.write( "EB = 2x
\n" ); document.write( "We know that AB = 4x because triangle ABC is equilateral.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The last step is to solve the proportion below
\n" ); document.write( "AE:EB = k:5
\n" ); document.write( "AE/EB = k/5
\n" ); document.write( "(2x)/(2x) = k/5
\n" ); document.write( "1 = k/5
\n" ); document.write( "k/5 = 1
\n" ); document.write( "k = 1*5
\n" ); document.write( "k = 5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So AE:EB = k:5 turns into AE:EB = 5:5 and we could reduce that ratio to 1:1
\n" ); document.write( "AE:EB = 1:1 indicates AE and EB are the same length.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: A) 5
\n" ); document.write( "
\n" ); document.write( "
\n" );