document.write( "Question 1171816: In the diagram, Line AB=Line AC, angle A= 60 degrees. If Line AD = 1/4 Line AC, and AE:EB=K:5, find the value of k, with all values in cm.\r
\n" );
document.write( "\n" );
document.write( "A) 5
\n" );
document.write( "B) 2
\n" );
document.write( "C) 10
\n" );
document.write( "D) 2 1/2
\n" );
document.write( "E) 3 1/2\r
\n" );
document.write( "\n" );
document.write( "https://ibb.co/K55rshc
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #796724 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "We're given that AB = AC, so triangle ABC is isosceles. This means the base angles B and C are congruent, as they are the base angles. Let y = angle B = angle C. \n" ); document.write( "We're also given angle A is 60 degrees. \n" ); document.write( "So, \n" ); document.write( "A+B+C = 180 \n" ); document.write( "60+y+y = 180 \n" ); document.write( "2y+60 = 180 \n" ); document.write( "2y = 180-60 \n" ); document.write( "2y = 120 \n" ); document.write( "y = 120/2 \n" ); document.write( "y = 60 \n" ); document.write( "Each angle of triangle ABC is 60 degrees, so triangle ABC is equilateral. \n" ); document.write( "This tells us that AB = BC = AC.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Draw a line from E to C \n" ); document.write( " ![]() \n" ); document.write( "We have similar triangles ADE and EDC \n" ); document.write( "This means we can form the proportion \n" ); document.write( "AD/DE = DE/DC \n" ); document.write( "and that can be rearranged into \n" ); document.write( "DE = sqrt(AD*DC) \n" ); document.write( "This shows DE is the geometric mean of AD and DC\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let x = AD \n" ); document.write( "Since AD is 1/4 the length of AC, we know that AC is 4 times longer compared to AD, so AC = 4*AD = 4x \n" ); document.write( "This leads to \n" ); document.write( "AD+DC = AC \n" ); document.write( "x+DC = 4x \n" ); document.write( "DC = 4x-x \n" ); document.write( "DC = 3x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Applying the geometric mean formula gets us \n" ); document.write( "DE = sqrt(AD*DC) \n" ); document.write( "DE = sqrt(x*3x) \n" ); document.write( "DE = sqrt(3x^2) \n" ); document.write( "This simplifies to x*sqrt(3), but we won't need to do this\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "With AD = x and DE = sqrt(3x^2), we can find AE through the pythagorean theorem \n" ); document.write( "(AD)^2 + (DE)^2 = (AE)^2 \n" ); document.write( "(x)^2 + (sqrt(3x^2))^2 = (AE)^2 \n" ); document.write( "x^2+3x^2 = (AE)^2 \n" ); document.write( "4x^2 = (AE)^2 \n" ); document.write( "(AE)^2 = 4x^2 \n" ); document.write( "AE = sqrt(4x^2) \n" ); document.write( "AE = sqrt((2x)^2) \n" ); document.write( "AE = 2x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now we can say \n" ); document.write( "AE+EB = AB \n" ); document.write( "2x+EB = 4x \n" ); document.write( "EB = 4x-2x \n" ); document.write( "EB = 2x \n" ); document.write( "We know that AB = 4x because triangle ABC is equilateral.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The last step is to solve the proportion below \n" ); document.write( "AE:EB = k:5 \n" ); document.write( "AE/EB = k/5 \n" ); document.write( "(2x)/(2x) = k/5 \n" ); document.write( "1 = k/5 \n" ); document.write( "k/5 = 1 \n" ); document.write( "k = 1*5 \n" ); document.write( "k = 5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So AE:EB = k:5 turns into AE:EB = 5:5 and we could reduce that ratio to 1:1 \n" ); document.write( "AE:EB = 1:1 indicates AE and EB are the same length.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: A) 5 \n" ); document.write( " \n" ); document.write( " |