\n" );
document.write( "1. J ==> (L v T) Premise
\n" );
document.write( "2. ~(L v ~J) Premise
\n" );
document.write( "// Prove: ~L ==> T\r
\n" );
document.write( "\n" );
document.write( "3. ~L & J 2, DeMorgan's (DeM)
\n" );
document.write( "4. J 3, Simplification (SIMP)
\n" );
document.write( "5. L v T 4,1, Modus Ponens (MP)
\n" );
document.write( "6. ~L ==> T 5, Material Implication (MI)\r
\n" );
document.write( "\n" );
document.write( "---------- DONE ----------\r
\n" );
document.write( "\n" );
document.write( "In words:
\n" );
document.write( "3. \"Not (L or (not J))\" true means we can say equivalently \"(not L) AND (J)\" is true. Draw a truth table if not convinced.
\n" );
document.write( "4. Since \"(not L) and J\" is true, we can say \"J is true\" (we can also say \"not L\" is true but we don't need that in this proof).
\n" );
document.write( "5. Given J is true, it follows \"L or T\" is true, by premise #1.
\n" );
document.write( "6. \"L or T\" true is the same as \"if (not L) then T\". Draw a truth table if not convinced. \r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( "