document.write( "Question 1171716: What are the number of possible values of b so that 4x² + bx - 9 can be factored as the product of two integral first degree polynomials? \n" ); document.write( "
Algebra.Com's Answer #796645 by Solver92311(821)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If the polynomial can be factored into integral first degree polynomials, then\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For that to be true, the radicand must be a perfect square and then both the sum and difference of and the radical must be evenly divisible by 4. Hence, the allowable values of are:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The only number I can find that fits into that set is 16.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "From
\n" ); document.write( "I > Ø
\n" ); document.write( "
\n" ); document.write( "
\n" );