document.write( "Question 1171628: In the following equation a, b, and c are positive real numbers and a < b < c .\r
\n" ); document.write( "\n" ); document.write( "y=−(x+a)(x−b)^2 (x+c)\r
\n" ); document.write( "\n" ); document.write( "State the expression, in terms of a, b and c, that represents the y-intercept.
\n" ); document.write( "

Algebra.Com's Answer #796532 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The y intercept always occurs when x = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in x = 0 to get,
\n" ); document.write( "y = -(x+a)*(x-b)^2*(x+c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "y = -(0+a)*(0-b)^2*(0+c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "y = -(a)*(-b)^2*(c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "y = -a*b^2*c\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The y intercept is -a*b^2*c
\n" ); document.write( "The location of the y intercept as an (x,y) point is (0, -a*b^2*c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since a,b,c are positive this makes a*b^2*c to be positive as well.
\n" ); document.write( "This flips to -a*b^2*c being negative.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Visually this indicates the function curve crosses the y axis somewhere below the x axis.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: The y intercept is -a*b^2*c and it's some negative number.\r
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );