document.write( "Question 1171585: The complex numbers z and w satisfy |z| = |w| = 1 and zw is not equal to -1.
\n" );
document.write( "(a) Prove that \overline{z} = {1}/{z} and \overline{w} = {1}/{w}.
\n" );
document.write( "(b) Prove that {z + w}/{zw + 1} is a real number.
\n" );
document.write( "Can you please explain in detail? I'm super confused, can someone please help? Thank you so much. \n" );
document.write( "
Algebra.Com's Answer #796489 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Part (a)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let \n" ); document.write( "z = a+bi \n" ); document.write( "w = c+di \n" ); document.write( "where a,b,c,d are real numbers and i = sqrt(-1) or i^2 = -1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since |z| = 1, this means \n" ); document.write( "|z| = sqrt(a^2+b^2) \n" ); document.write( "1 = sqrt(a^2+b^2) \n" ); document.write( "1^2 = (sqrt(a^2+b^2))^2 \n" ); document.write( "1 = a^2 + b^2 \n" ); document.write( "a^2 + b^2 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Through similar algebraic steps, we can say, \n" ); document.write( "|w| = 1 \n" ); document.write( "leads to \n" ); document.write( "c^2 + d^2 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Using our definition of z, let's find 1/z \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This proves that \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The steps to proving \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll use the fact that \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==========================================================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part (b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let \n" ); document.write( "x = complex conjugate of z = a-bi \n" ); document.write( "y = complex conjugate of w = c-di \n" ); document.write( "I'm using x and y instead of the overbar notation because I think the overbar notation is a bit clunky, especially when mixed with fraction bars.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, \n" ); document.write( "z+x = (a+bi)+(a-bi) = 2a \n" ); document.write( "w+y = (c+di)+(c-di) = 2c \n" ); document.write( "both are real values. \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Furthermore, \n" ); document.write( "z*x = 1 \n" ); document.write( "w*y = 1 \n" ); document.write( "was proven earlier in part (a), just with different notation. \n" ); document.write( "This indicates that zx*wy = 1*1 = 1.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now if \n" ); document.write( "z = a+bi \n" ); document.write( "w = c+di \n" ); document.write( "Then, \n" ); document.write( "z*w = (a+bi)*(c+di) \n" ); document.write( "z*w = a*(c+di)+bi*(c+di) \n" ); document.write( "z*w = ac+adi+bci+bdi^2 \n" ); document.write( "z*w = ac+adi+bci+bd(-1) \n" ); document.write( "z*w = ac+adi+bci-bd \n" ); document.write( "z*w = (ac-bd)+(adi+bci) \n" ); document.write( "z*w = (ac-bd)+(ad+bc)i\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Through very similar steps we can say, \n" ); document.write( "x = a-bi \n" ); document.write( "y = c-di \n" ); document.write( "x*y = (ac-bd)-(ad+bc)i\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "As you can see: \n" ); document.write( "zw+xy = [(ac-bd)+(ad+bc)i] + [(ac-bd)-(ad+bc)i] \n" ); document.write( "zw+xy = [(ac-bd)+(ac-bd)]+[(ad+bc)i-(ad+bc)i] \n" ); document.write( "zw+xy = [2(ac-bd)]+[0(ad+bc)i] \n" ); document.write( "zw+xy = 2(ac-bd)+0i \n" ); document.write( "zw+xy = 2(ac-bd) \n" ); document.write( "which is a real result\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To summarize everything so far for part (b), we can add any complex number to its conjugate to get a real result. Similarly, we can multiply any complex number with its conjugate to get a real result. Lastly, zw+xy sorta involves both concepts going on at once which means zw+xy is also a real number.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We build up those statements to be able to say the following\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The denominator 2(ac-bd)+2 is some real number. Let's expand out the numerator and see what we get\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The numerator 2a+2c is a real number.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We could divide every term by 2 to simplify further, but at this point we're effectively done with the proof. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Both the numerator and denominator are real values, so overall \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note: The condition \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Further Reading: \n" ); document.write( "https://math.stackexchange.com/questions/427663/prove-if-z-w-1-and-1zw-neq-0-then-zw-over-1zw-is-a-real \n" ); document.write( " \n" ); document.write( " |