.
\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " In calculus, the Extreme Value Theorem states that if a real-valued function f is continuous on \r\n" );
document.write( "\r\n" );
document.write( " the closed interval [a,b], then f must attain a maximum and a minimum, each at least once. \r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "See this Wikipedia article
\n" );
document.write( "https://en.wikipedia.org/wiki/Extreme_value_theorem\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "So, the function is assumed to be CONTINUOUS.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The given function is the sum of two elementary functions, x and
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Each of the two functions is continues on the given interval, as it is known from Calculus.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, the sum of these functions is continue on the given interval.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It proves the statement.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To answer the last question, you need to solve this quadratic equation \r\n" );
document.write( "\r\n" );
document.write( " x + 1/x = c.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Reduce it to the standard form\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " x^2 + 1 = cx\r\n" );
document.write( "\r\n" );
document.write( " c^2 - cx + 1 = 0\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Calculate the discriminant\r\n" );
document.write( "\r\n" );
document.write( " d =
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The equation is solvable in real numbers if and only if d >= 0, which is\r\n" );
document.write( "\r\n" );
document.write( " c^2 >= 4,\r\n" );
document.write( "\r\n" );
document.write( "giving\r\n" );
document.write( "\r\n" );
document.write( " c <= -2 OR c >= 2. (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since our function g(x) = x +
is always positive on the given interval, \r\n" );
document.write( "\r\n" );
document.write( "the inequality (1) for \"c\" is reduced to\r\n" );
document.write( "\r\n" );
document.write( " c >= 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The plot below illustrate the function\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Plot y = x + 1/x\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next, to get the final description for the range of \"c\"-values, we should evaluate the function at the ends of the interval\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " g(3) =
= 1
; g(4) =
= 4
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we select the smallest and the greatest values of these two end-points, which are 3
and 4
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In this way, we obtain inequalities for \"c\" in the FINAL form\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " 3
<= c <= 4
.\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "The problem is just solved - all the questions are answered.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "