document.write( "Question 1171194: Verify that the hypotheses of the Mean Value Theorem are satisfied on the given interval and find all values c that satisfies the conclusion of the theorem if g(x) = x + 1/x, 3 =< x =< 4. \n" ); document.write( "
Algebra.Com's Answer #796113 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "    In calculus, the Extreme Value Theorem states that if a real-valued function f is continuous on \r\n" );
document.write( "\r\n" );
document.write( "    the closed interval [a,b], then f must attain a maximum and a minimum, each at least once. \r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "See this Wikipedia article
\n" ); document.write( "https://en.wikipedia.org/wiki/Extreme_value_theorem\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "So, the function is assumed to be CONTINUOUS.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The given function is the sum of two elementary functions,  x  and  \"1%2Fx\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Each of the two functions is continues on the given interval, as it is known from Calculus.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, the sum of these functions is continue on the given interval.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It proves the statement.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To answer the last question, you need to solve this quadratic equation \r\n" );
document.write( "\r\n" );
document.write( "    x + 1/x = c.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Reduce it to the standard form\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    x^2 + 1 = cx\r\n" );
document.write( "\r\n" );
document.write( "    c^2 - cx + 1 = 0\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Calculate the discriminant\r\n" );
document.write( "\r\n" );
document.write( "    d = \"c%5E2+-+4\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The equation is solvable in real numbers if and only if  d >= 0, which is\r\n" );
document.write( "\r\n" );
document.write( "    c^2 >= 4,\r\n" );
document.write( "\r\n" );
document.write( "giving\r\n" );
document.write( "\r\n" );
document.write( "    c <= -2   OR   c >= 2.     (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since our function g(x) = x + \"1%2Fx\"  is always positive on the given interval,  \r\n" );
document.write( "\r\n" );
document.write( "the inequality (1)  for \"c\" is reduced to\r\n" );
document.write( "\r\n" );
document.write( "    c >= 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The plot below illustrate the function\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"graph%28+400%2C+400%2C+-1%2C+5%2C+-2%2C+10%2C%0D%0A++++++++++++++x+%2B+1%2Fx++++++%0D%0A%29\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "            Plot y = x + 1/x\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next, to get the final description for the range of \"c\"-values, we should evaluate the function at the ends of the interval\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    g(3) = \"3+%2B+1%2F3\" = 1 \"1%2F3\";  g(4) = \"4+%2B+1%2F4\" = 4 \"1%2F4\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we select the smallest and the greatest values of these two end-points, which are  3 \"1%2F3\" and  4 \"1%2F4\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In this way, we obtain inequalities for \"c\" in the FINAL form\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "        3 \"1%2F3\" <= c <= 4 \"1%2F4\".\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "The problem is just solved - all the questions are answered.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );