.
\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Introduce new variables a =
, b =
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then the given system can be re-written in this EQUIVALENT form\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " a^3 + b^3 = 35 (1) (from the first equation)\r\n" );
document.write( "\r\n" );
document.write( "and\r\n" );
document.write( "\r\n" );
document.write( " a^2 - ab + b^2 = 7 (2) (from the second equation).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From Algebra, we know this identity\r\n" );
document.write( "\r\n" );
document.write( " a^3 + b^3 = (a+b)*(a^2 - ab + b^2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, equation (1) is\r\n" );
document.write( "\r\n" );
document.write( " (a+b)*(a^2 - ab + b^2) = 35. (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In equation (3), replace a^2 - ab + b^2 by 7, based on (2). You will get then\r\n" );
document.write( "\r\n" );
document.write( " 7*(a+b) = 35 \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "from (3), which implies\r\n" );
document.write( "\r\n" );
document.write( " a + b = 35/7 = 5.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, instead of two equations (1) and (2), one of which is of the degree 3 and another is of the degree 2,\r\n" );
document.write( "we get an EQUIVALEN system of equations\r\n" );
document.write( "\r\n" );
document.write( " a^3 + b^3 = 35 (4) (the same as equation (1) )\r\n" );
document.write( "\r\n" );
document.write( " a + b = 5 (5) (deduced and has the degree 1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now, from equation (5) express b = 5-a and substitute it into equation (4). You will get then\r\n" );
document.write( "\r\n" );
document.write( " a^3 + (5-a)^3 = 35\r\n" );
document.write( "\r\n" );
document.write( " a^3 + 5^3 - 3*5^2*a + 3*5*a^2 - a^3 = 35\r\n" );
document.write( "\r\n" );
document.write( " 15a^2 - 75a + 125 = 35\r\n" );
document.write( "\r\n" );
document.write( " 15a^2 - 75a + 90 = 0\r\n" );
document.write( "\r\n" );
document.write( " a^2 - 5a + 6 = 0 (after canceling factor 15 in previous equation)\r\n" );
document.write( "\r\n" );
document.write( " (a - 2)*(a - 3) = 0 (after factoring the previous equation).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So the system (1), (2) has two solutions\r\n" );
document.write( "\r\n" );
document.write( " (a) (a,b) = (2,3) \r\n" );
document.write( "\r\n" );
document.write( "and\r\n" );
document.write( "\r\n" );
document.write( " (b) (a,b) = (3,2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It means that the original system has two solutions\r\n" );
document.write( "\r\n" );
document.write( " (a) x =
, y =
\r\n" );
document.write( "\r\n" );
document.write( "and\r\n" );
document.write( "\r\n" );
document.write( " (b) x =
, y =
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER. The given system has two solutions (a) x =
, y =
and (b) x =
, y =
.\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "Solved and explained in all details.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "