document.write( "Question 1169745: 2)Determine the equilibrium prices of the three interdependent commodity that satisfy.
\n" );
document.write( " 𝑝1+3𝑝2+3𝑝3=32
\n" );
document.write( " 𝑝1+4𝑝2+3𝑝3=37
\n" );
document.write( " 𝑝1+3𝑝2+4𝑝3=35
\n" );
document.write( "(Express this system in matrix form and hence find the values of 𝑝1, 𝑝2 and 𝑝3)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #794559 by ikleyn(52794)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "𝑝1 + 3𝑝2 + 3𝑝3 = 32 (1)\r\n" ); document.write( "𝑝1 + 4𝑝2 + 3𝑝3 = 37 (2)\r\n" ); document.write( "𝑝1 + 3𝑝2 + 4𝑝3 = 35 (3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From equation (3), subtract equation (1). You will get\r\n" ); document.write( "\r\n" ); document.write( " p3 = 35 - 32 = 3. (4)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Next, from equation (2), subtract equation (1). You will get\r\n" ); document.write( "\r\n" ); document.write( " p2 = 37 - 32 = 5.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Sunbstitute the found values p2= 5, p3 = 3 into equation (1). You will get\r\n" ); document.write( "\r\n" ); document.write( "p1 + 3*5 + 3*3 = 32\r\n" ); document.write( "\r\n" ); document.write( "which implies \r\n" ); document.write( "\r\n" ); document.write( "p1 = 32 - 3*5 - 3*3 = 8.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. p1= 8, p2= 5, p3= 3.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |