document.write( "Question 1169576: Find all solutions to the system\r
\n" ); document.write( "\n" ); document.write( "a + b = 14
\n" ); document.write( "a^3 + b^3 = 812.\r
\n" ); document.write( "\n" ); document.write( "How would I solve this? (Not looking for an answer by the way)
\n" ); document.write( "

Algebra.Com's Answer #794360 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Recall that sum of cubes factoring formula is
\n" ); document.write( "a^3 + b^3 = (a+b)(a^2 - ab + b^2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note how we have (a+b) show up. If we divide both sides by (a+b), then,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(a^3 + b^3)/(a+b) = [ (a+b)(a^2 - ab + b^2) ]/(a+b)
\n" ); document.write( "(a^3 + b^3)/(a+b) = a^2 - ab + b^2
\n" ); document.write( "a^2 - ab + b^2 = (a^3 + b^3)/(a+b)
\n" ); document.write( "a^2 - ab + b^2 = (812)/(14)
\n" ); document.write( "a^2 - ab + b^2 = 58
\n" ); document.write( "We'll use this later. So let's call this equation 3.
\n" ); document.write( "Note: since we divided by (a+b), we must require that \"a+%3C%3E+-b\" to avoid dividing by zero.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Go back to a+b = 14 and square both sides
\n" ); document.write( "a+b = 14
\n" ); document.write( "(a+b)^2 = 14^2
\n" ); document.write( "a^2 + 2ab + b^2 = 196
\n" ); document.write( "Call this equation 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we have equation 3 and equation 4 as
\n" ); document.write( "a^2 - ab + b^2 = 58
\n" ); document.write( "a^2 + 2ab + b^2 = 196
\n" ); document.write( "If we subtract straight down, the a^2 and b^2 terms cancel out and go away. We end up with
\n" ); document.write( "-3ab = -138
\n" ); document.write( "ab = (-138)/(-3)
\n" ); document.write( "ab = 46\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So whatever 'a' and 'b' are, they must multiply to 46.
\n" ); document.write( "They must also add to 14.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Consider the factorization
\n" ); document.write( "(x-a)(x-b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "FOIL that out to get
\n" ); document.write( "x^2 - ax - bx + ab
\n" ); document.write( "x^2 - (a + b)x + ab\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The roots of
\n" ); document.write( "(x-a)(x-b) = 0
\n" ); document.write( "are a and b\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means the roots of
\n" ); document.write( "x^2 - (a + b)x + ab = 0
\n" ); document.write( "are also a and b
\n" ); document.write( "We have the roots adding to the negative of the middle coefficient; and also the roots multiplying to the last term. I'm using one of Vieta's Formulas.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore, you need to solve
\n" ); document.write( "x^2 - 14x + 46 = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I'll let you take over from here. Use the quadratic formula.
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );