document.write( "Question 1169508: Help me solve this, please!
\n" );
document.write( "The length of a rectangle is one more than the width. If the dimensions are both decreased by 2 units, the ares of the new rectangle is 30 sq. units less than the area of the original rectangle. Find the area of the original rectangle. \n" );
document.write( "
Algebra.Com's Answer #794260 by ikleyn(52915) You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "Let x be the width of the original rectangle.\r\n" ); document.write( "\r\n" ); document.write( "Then its length is (x+1), according to the condition,\r\n" ); document.write( "\r\n" ); document.write( " and the area is x*(x+1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The decreased dimensions are (x-2) and ((x+1)-2) = (x-1),\r\n" ); document.write( "\r\n" ); document.write( "so the decreased area is (x-2)*(x-1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From the condition,\r\n" ); document.write( "\r\n" ); document.write( " (x-2)*(x-1) = x*(x+1) - 30.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Simplify\r\n" ); document.write( "\r\n" ); document.write( " x^2 - 3x + 2 = x^2 + x - 30\r\n" ); document.write( "\r\n" ); document.write( " 30 + 2 = x + 3x\r\n" ); document.write( "\r\n" ); document.write( " 32 = 4x\r\n" ); document.write( "\r\n" ); document.write( " x = 32/4 = 8.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. The original dimensions are 8 units (the width) and 8+1 = 9 units (the length).\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |