document.write( "Question 1168149: The probability that a first year student entering a certain private college needs neither a developmental math course nor a developmental English is 69% while 28% require a developmental math course and 21% require a developmental English course.
\n" ); document.write( "Find the probability that a first year student requires both a development math course and a developmental English course.
\n" ); document.write( "

Algebra.Com's Answer #792789 by ikleyn(52814)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "From the condition,\r\n" );
document.write( "\r\n" );
document.write( "    P(English OR Math) = 100% - 69% = 31%.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From the basic formula of the Elementary Probability theory\r\n" );
document.write( "\r\n" );
document.write( "    P(English OR Math) = P(English) + P(Math) - P(English AND Math).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Substitute all known / given values into this formula\r\n" );
document.write( "\r\n" );
document.write( "    31% = 21% + 28% - P(English AND Math).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From this equation, find P(English AND Math)\r\n" );
document.write( "\r\n" );
document.write( "    P(English AND Math) = 21% + 28% - 31% = 18%.    ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );