document.write( "Question 1168149: The probability that a first year student entering a certain private college needs neither a developmental math course nor a developmental English is 69% while 28% require a developmental math course and 21% require a developmental English course.
\n" );
document.write( "Find the probability that a first year student requires both a development math course and a developmental English course. \n" );
document.write( "
Algebra.Com's Answer #792789 by ikleyn(52814)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "From the condition,\r\n" ); document.write( "\r\n" ); document.write( " P(English OR Math) = 100% - 69% = 31%.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From the basic formula of the Elementary Probability theory\r\n" ); document.write( "\r\n" ); document.write( " P(English OR Math) = P(English) + P(Math) - P(English AND Math).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Substitute all known / given values into this formula\r\n" ); document.write( "\r\n" ); document.write( " 31% = 21% + 28% - P(English AND Math).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From this equation, find P(English AND Math)\r\n" ); document.write( "\r\n" ); document.write( " P(English AND Math) = 21% + 28% - 31% = 18%. ANSWER\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |