document.write( "Question 1166990: Using the modified Newton - Raphson method, find the solutions
\n" ); document.write( "accurate to within 10−7
\n" ); document.write( "to the following problems\r
\n" ); document.write( "\n" ); document.write( "a. 𝑓(𝑥) = 𝑒x − 𝑥 − 1 for 0 ≤ 𝑥 ≤ 1 [HINT: p0 = 1]\r
\n" ); document.write( "\n" ); document.write( "the x before e is a power( so its e power x)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #791564 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore the function is constantly increasing on the given interval, hence is the absolute minimum on the given interval and is therefore the only zero of the function on the interval.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So why do you need Newton-Raphson?\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I > Ø
\n" ); document.write( "
\n" ); document.write( "
\n" );