document.write( "Question 1166223: The sum of the digits of a certain two-digit number is 10. If the digits are reversed, a new number is formed which is one less than twice the original number. \n" ); document.write( "
Algebra.Com's Answer #790706 by math_helper(2461)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The original number: 10a + b (a and b are each single digits from the set {'0','1',...,'9'}\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Reversing the digits gives the number 10b + a\r
\n" ); document.write( "\n" ); document.write( "Swapped number = 2(Original number) - 1:
\n" ); document.write( "10b + a = 2(10a + b) - 1 \r
\n" ); document.write( "\n" ); document.write( "Because a+b=10, we can replace 'a' with '10-b' to get one equation in one unknown (in this case, b):
\n" ); document.write( "
\n" ); document.write( "10b + (10-b) = 2(10(10-b) + b) - 1
\n" ); document.write( "...
\n" ); document.write( "This simplifies to b=7 ==> a=3\r
\n" ); document.write( "\n" ); document.write( "The original number is 37
\n" ); document.write( "The swapped number is 73\r
\n" ); document.write( "\n" ); document.write( "Check:
\n" ); document.write( "73 = 2(37)-1 = 74-1 (ok)
\n" ); document.write( " \n" ); document.write( "
\n" );