document.write( "Question 1165726: the towers of a parabolic suspension bridges 200 meter long are 40 meter high. If the lowest point of the cable is 10 meter above the roadway.find the:
\n" );
document.write( "a) standard equation of the parabola
\n" );
document.write( "b) vertical distance from the roadway to the cable at 50 meter from the center. \n" );
document.write( "
Algebra.Com's Answer #790270 by ankor@dixie-net.com(22740)![]() ![]() You can put this solution on YOUR website! the towers of a parabolic suspension bridges 200 meter long are 40 meter high. If the lowest point of the cable is 10 meter above the roadway. \n" ); document.write( "find the: \n" ); document.write( "a) standard equation of the parabola \n" ); document.write( "let the center of the bridge be at the origin 0,0 then when x=0 and y=10 \n" ); document.write( "using the form ax^2 + bx + c = y, we know c=10 \n" ); document.write( "x=-100, y=200 \n" ); document.write( "10000a - 100b + 10 = 200 \n" ); document.write( "and \n" ); document.write( "x=100, y=200 \n" ); document.write( "10000a, + 100b + 10 = 200 \n" ); document.write( "use elimination with these two equations \n" ); document.write( "10000a - 100b + 10 = 200 \n" ); document.write( "10000a + 100b + 10 = 200 \n" ); document.write( "----------------------------Addition eliminates b, find a \n" ); document.write( "20000a + 20 = 400 \n" ); document.write( "20000a = 400 - 20 \n" ); document.write( "20000a = 380 \n" ); document.write( "a = 380/20000 \n" ); document.write( "a = .019 \n" ); document.write( "therefore our equation is simple (b=0) \n" ); document.write( "y = .019x^2 + 10 \n" ); document.write( " \n" ); document.write( "green line is 200 meters \n" ); document.write( ": \n" ); document.write( "b) vertical distance from the roadway to the cable at 50 meter from the center. \n" ); document.write( "x = 50 \n" ); document.write( " y = .019(50)^2 + 10 \n" ); document.write( " y = 57.5 vertical dist at 50 meters (blue line) \n" ); document.write( " |