document.write( "Question 108243: find the equation, in standard form, with all integer coefficients, of the line perpendicular to 3x-6y=9 and passing through (-2,-1). \n" ); document.write( "
Algebra.Com's Answer #78939 by chitra(359)![]() ![]() You can put this solution on YOUR website! the given equation is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3x - 6y = 9 \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Writing this equation in the slope intercept form, we get: \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "therefore the slope in the above equation is m = (1/2) \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We know that 2 lines are perpendicular when the product of their slopes are equal to -1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the slope of the second line is = -2 \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now substituing the point and the slope in the one point form we get the required line.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(y - y1) = m(x - x1) \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(y - (-1)) = (-2)(x - (-2)) \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y + 1 = (-2)( x + 2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y + 1 = -2x - 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==> y = -2x - 5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "thus the required line\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |