document.write( "Question 108243: find the equation, in standard form, with all integer coefficients, of the line perpendicular to 3x-6y=9 and passing through (-2,-1). \n" ); document.write( "
Algebra.Com's Answer #78939 by chitra(359)\"\" \"About 
You can put this solution on YOUR website!
the given equation is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3x - 6y = 9 \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Writing this equation in the slope intercept form, we get: \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y+=+%28x%2F2%29+-+%283%2F2%29\" \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "therefore the slope in the above equation is m = (1/2) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We know that 2 lines are perpendicular when the product of their slopes are equal to -1.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the slope of the second line is = -2 \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now substituing the point and the slope in the one point form we get the required line.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(y - y1) = m(x - x1) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(y - (-1)) = (-2)(x - (-2)) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "y + 1 = (-2)( x + 2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "y + 1 = -2x - 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "==> y = -2x - 5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "thus the required line\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );