document.write( "Question 1164526: Suppose A is an invertible n × n matrix. Must the system of equations A x = x have a unique solution? Explain your reasoning. \n" ); document.write( "
Algebra.Com's Answer #788932 by ikleyn(52778)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "No.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The matrix equation  Ax = x  means that the matrix  A  has an eigenvalue equal to  1.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Far not every square invertible matrix  A  has eigenvalue  1.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A contradictory example is any  2x2-matrix of the rotation by angle  \"alpha\"  in the coordinate plane with\r
\n" ); document.write( "\n" ); document.write( "the rotation angle  \"alpha\"  different from  0 (from zero or from any multiple of the full angle  \"2pi\").\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solved, answered and explained.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );