document.write( "Question 1164256: Factorize the following: a^3+3a^2+3a+2 \n" ); document.write( "
Algebra.Com's Answer #788551 by Edwin McCravy(20059)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "\r\n" );
document.write( "The other method is fine if you have memorized the binomial expansion\r\n" );
document.write( "identity:\r\n" );
document.write( "\r\n" );
document.write( "(x + y)³ = x³ + 3x²y + 3xy² + y³\r\n" );
document.write( "\r\n" );
document.write( "and observe how close it is to the given cubic polynomial.  But most\r\n" );
document.write( "students probably haven't memorized this.  So I did it the other way:\r\n" );
document.write( "\r\n" );
document.write( "--------------------------------------------------------------------\r\n" );
document.write( "\r\n" );
document.write( "\"a%5E3%2B3a%5E2%2B3a%2B2\"\r\n" );
document.write( "\r\n" );
document.write( "We search for rational roots which are ± factors of 2,\r\n" );
document.write( "which are ±1, ±2\r\n" );
document.write( "\r\n" );
document.write( "There are no sign changes so there are no positive roots,\r\n" );
document.write( "So the only rational roots, if any, are -1 and -2\r\n" );
document.write( "\r\n" );
document.write( "We try -1\r\n" );
document.write( "\r\n" );
document.write( "-1 | 1  3  3  2\r\n" );
document.write( "   |   -1 -2 -1 \r\n" );
document.write( "     1  2  1  1\r\n" );
document.write( "\r\n" );
document.write( "No, for the remainder is not 0.\r\n" );
document.write( "\r\n" );
document.write( "We try -1\r\n" );
document.write( "\r\n" );
document.write( "-2 | 1  3  3  2\r\n" );
document.write( "   |   -2 -2 -2 \r\n" );
document.write( "     1  1  1  0\r\n" );
document.write( "\r\n" );
document.write( "Yes, for the remainder is 0.\r\n" );
document.write( "\r\n" );
document.write( "We divided by a+2 and the quotient is determined by\r\n" );
document.write( "the first three numbers on the bottom of the synthetic\r\n" );
document.write( "division.  The quotient is 1a² + 1a + 1 or a² + a + 1.\r\n" );
document.write( "\r\n" );
document.write( "(a + 2)(a² + a + 1)      <--answer\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );