document.write( "Question 1163529: Prove lim (2x^2 - x - 1) = 2 as x approaches -1 using precise definition of limits.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #787712 by Edwin McCravy(20054)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "\"lim%5B%22x-%3E-1%22%5D%282x%5E2+-+x+-+1%29+=+2\" \r\n" );
document.write( "\r\n" );
document.write( "For any given ε > 0, we must find a δ > 0 such that\r\n" );
document.write( "\r\n" );
document.write( "|(2x² - x - 1) - 2| < ε whenever |x - (-1)|  = |x + 1| < δ \r\n" );
document.write( "\r\n" );
document.write( "|(2x² - x - 1) - 2| < ε iff\r\n" );
document.write( "\r\n" );
document.write( "|2x² - x - 1 - 2| < ε iff\r\n" );
document.write( "\r\n" );
document.write( "|2x² - x - 3| < ε iff\r\n" );
document.write( "\r\n" );
document.write( "|(2x-3)(x+1)| < ε\r\n" );
document.write( "\r\n" );
document.write( "To find the appropriate δ on the interval (-2,0), we know that\r\n" );
document.write( "\r\n" );
document.write( "|2x-3| < 7\r\n" );
document.write( "\r\n" );
document.write( "So on the interval (-2,0), \r\n" );
document.write( "\r\n" );
document.write( "|(2x-3)(x+1)| < ε iff \r\n" );
document.write( "\r\n" );
document.write( "\"abs%28x%2B1%29+%3C+epsilon%2F%28%282x-3%29%29+%3C+epsilon%2F7\"\r\n" );
document.write( "\r\n" );
document.write( "Thus whenever δ < ε/7, then \r\n" );
document.write( "\r\n" );
document.write( "|(2x² - x - 1) - 2| < ε \r\n" );
document.write( "\r\n" );
document.write( "thus \"lim%5B%22x-%3E-1%22%5D%282x%5E2+-+x+-+1%29+=+2\"     [PROVED]\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );