.\r
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Let x be the size of the square base and h be the height of the pot, in centimeters.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then the volume of the pot is\r\n" );
document.write( "\r\n" );
document.write( " V =
. (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The surface are of this pot, which has no top, is\r\n" );
document.write( "\r\n" );
document.write( " A =
= 500 cm^2. (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we want to find optimal values of \"x\" and \"h\" to maximize the volume (1) at given restriction (2) on surface area.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From (2), we have \r\n" );
document.write( "\r\n" );
document.write( " h =
=
. (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Substitute it into (1) to get\r\n" );
document.write( "\r\n" );
document.write( " V =
=
-
. (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we need to find a maximum value for V in formula (4) considering the volume as a function of \"x\" only.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "For it, take the derivative of V(x) and equate it to zero\r\n" );
document.write( "\r\n" );
document.write( " V'(x) = 125 -
= 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It implies\r\n" );
document.write( "\r\n" );
document.write( " 500 = 3x^2\r\n" );
document.write( "\r\n" );
document.write( " x^2 =
\r\n" );
document.write( "\r\n" );
document.write( " x =
= 12.91 cm (approximately.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then\r\n" );
document.write( "\r\n" );
document.write( " h = (see formula (3)) =
=
= 6.45 cm.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the problem is just solved.\r\n" );
document.write( "\r\n" );
document.write( "Optimal dimensions are: the square base size of 12.91 cm and the height of 6.45 cm.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The maximum volume is
=
= 1075 cm^3 (approximately).\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "Solved.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "