document.write( "Question 1163196: prove that the given equation is an identity\r
\n" );
document.write( "\n" );
document.write( "cos((pi/2)-x)=sinx \n" );
document.write( "
Algebra.Com's Answer #787231 by Theo(13342)![]() ![]() You can put this solution on YOUR website! this can be solved geometrically, but you can also solve it using trig identities.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the trig identity you can use is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(a - b) = cos(a) * cos(b) + sin(a) * sin(b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the equation you want to prove is true is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(pi/2) - x) = sin(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "let a = pi/2 and b = x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the identity of:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(a - b) = cos(a) * cos(b) + sin(a) * sin(b) becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(pi/2 - x) = cos(pi/2) * cos(x) + sin(pi/2) * sin(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(pi/2) = 0 \n" ); document.write( "sin(pi/2) = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(pi/2 - x) = cos(pi/2) * cos(x) + sin(pi/2) * sin(x) becomes: \n" ); document.write( "cos(pi/2 - x) = 0 * cos(x) + 1 * sin(x) \n" ); document.write( "simplify to get: \n" ); document.write( "cos(pi/2 - x) = sin(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "there's your proof.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a nice list of trigonometric identities can be found at: \n" ); document.write( "https://www.purplemath.com/modules/idents.htm\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the identity you are looking for will be under the title of angle sum and difference identities.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you can also solve this geometrically as follows:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "draw a right triangle ABC with the right angle at C. \n" ); document.write( "since the sum of the angles of a triangle = 180, then: \n" ); document.write( "angle A + angle B + angle C = 180 \n" ); document.write( "since angle C = 90 degrees, then: \n" ); document.write( "angle A + angle B + 90 degrees = 180 degrees \n" ); document.write( "subtract 90 from both sides of that equation to get: \n" ); document.write( "angle A + angle B = 90 degrees. \n" ); document.write( "solve for angle B to get: \n" ); document.write( "angle B = 90 - angle A. \n" ); document.write( "in the triangle ABC, the side opposite angle A is side a, the side opposite angle B is side b, the side opposite angle C is side c. \n" ); document.write( "since C is the 90 degree angle, then the hypotenuse of the triangle is side c. \n" ); document.write( "cos(angle B) = adjacent / hypotenuse = side a divided by side c \n" ); document.write( "sin(angle A) = opposite / hypotenuse = side a divided by side c \n" ); document.write( "this makes cos(angle B) = sin(angle A) \n" ); document.write( "since angle B = 90 - angle A, this makes cos(90 - angle A) = sin(angle A) \n" ); document.write( "let angle A = x, then this equation becomes: \n" ); document.write( "cos(90 - x) = sin(x) \n" ); document.write( "translate 90 degrees to radians to get: \n" ); document.write( "90 degrees * pi / 180 = pi/2 radians. \n" ); document.write( "replace 90 degrees with pi/2 radians to get cos(pi/2 - x) = sin(x) \n" ); document.write( "this also proves the equation is an identity.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "here's a diagram that helps you to see what's happening with the geometric proof.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |