document.write( "Question 1162885: For how many integers n is n^2 + 18n + 13 a perfect square? \n" ); document.write( "
Algebra.Com's Answer #786805 by ikleyn(52832)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " It looks AMAZINGLY, but there is the way to solve the problem formally, in strict Algebra logic, without trials and errors.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "Let n^2 + 18n + 13 = m^2 be a perfect square.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " (n + 9)^2 - 68 = m^2\r\n" ); document.write( "\r\n" ); document.write( " (n + 9)^2 - m^2 = 68\r\n" ); document.write( "\r\n" ); document.write( " (n + m + 9)*(n - m + 9) = 68.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Decompositions for 68 are 1*68, 2*34, 4*17, 17*4, 34*2 and 68*1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "For each decomposition, we have the system of equations\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " n + m + 9 = 1\r\n" ); document.write( " n - m + 9 = 68\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " n + m + 9 = 2\r\n" ); document.write( " n - m + 9 = 34\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " n + m + 9 = 4\r\n" ); document.write( " n - m + 9 = 17\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " n + m + 9 = 17\r\n" ); document.write( " n - m + 9 = 4\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " n + m + 9 = 34\r\n" ); document.write( " n - m + 9 = 2\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " n + m + 9 = 68\r\n" ); document.write( " n - m + 9 = 1\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Easy analysis shows that some of these systems produce non-integer solution.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The only system, which produces appropriate integer solution, is THIS\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " n + m + 9 = 34\r\n" ); document.write( " n - m + 9 = 2\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The solution is n = 9, m = 16.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Therefore, n = 9 is the solution to the problem.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "If you analyze the similar systems with decomposition of the number 68 into the product of negative factors, \r\n" ); document.write( "you will find another solution n = -27.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In all, there are 2 (two) such numbers n, 9 and -27.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |