document.write( "Question 1162751: Please use formal mathematical induction to prove that given any 37 positive integers, it’s possible to choose 7 whose sum is divisible by 7. \n" ); document.write( "
Algebra.Com's Answer #786584 by ikleyn(52858)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            The method of  Mathematical  Induction is  IRRELEVANT  to this problem.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            The proof is constructed based on other principles.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "                                THE PROOF\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let an arbitrary set of  37 positive integer numbers is given.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I organize  7 boxes numbered from  0  to  6.  So,  the boxes are numbered  0, 1, 2, 3, 4, 5 and 6.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I distribute all these  37 numbers in these  7 boxes according their remainders modulo 7.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If some box has at least  7 numbers,  then these  7 numbers provide the required sum.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "If there is no a box with at least  7 numbers,  it means that each box has no more than  6 numbers and all boxes have no more than  6 numbers.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If all boxes have at least one number,  then their sum  0 + 1 + 2 + 3 + 4 + 5 + 6 = 21   (mod7)   is divisible by  7.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If not all boxes have at least one number,  it means that at least one box is empty.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In this case,  we have  6 boxes with no more than  6 numbers in each,  which gives  6*6 = 36 numbers.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "But then the  37-th number breaks this scheme.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So,  having  37 numbers in  7 boxes,  we  EITHER  can find a box with at least  7 numbers in it \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "     and then this box provides the required sum of 7 numbers,\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "OR,  otherwise,  all  7 boxes have at least one number each,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "    and then we can form the sum  0 + 1 + 2 + 3 + 4 + 5 + 6 = 21 (mod7)\r\n" );
document.write( "\r\n" );
document.write( "    of numbers from these boxes which is divisible by 7.\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The proof is completed.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The key to the proof  (and to the statement itself)  is this equality   37 = 6*6 + 1.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Done.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );