document.write( "Question 1162486: Assume that military aircraft use ejection seats designed for men weighing between 148.1 lb and 204 lb. If women's weights are normally distributed with a mean of 162.2 lb and a standard deviation of 46.8 lb, what percentage of women have weights that are within those limits? Are many women excluded with those specifications?
\n" );
document.write( "The percentage of women that have weights between those limits is
\n" );
document.write( "nothing%.
\n" );
document.write( "(Round to two decimal places as needed.) \n" );
document.write( "
Algebra.Com's Answer #786289 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! z=(x-mean)/sd \n" ); document.write( "so the first z is (148.1-162.2)/46.8 and the second is (204-162.2)/46.8, which are z s of -0.30 and 0.89 which is probability of 0.4312 or 43.12%\r \n" ); document.write( "\n" ); document.write( "The calculator is nice for this 2nd VARS 2normalcdf ENTER (148.1,204,162.2,46.8) ENTER and probability of 0.4325 or 43.25%, the difference being rounding in the first. Many are excluded with these specifications. \n" ); document.write( " |