document.write( "Question 1161665: Are there any functions defined on real numbers or rational numbers other than zero function and identity function in such way that f^{3}g(x) = fg(fg(x)) i.e.
\n" );
document.write( "f(f(f(g(x)))) = f(g(f(g(x)))) for all x belongs to R or Q.
\n" );
document.write( "[Note: Here f(g(x)) is composition of functions or composite function rule] \n" );
document.write( "
Algebra.Com's Answer #785275 by ikleyn(52798)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You may take, for example, g(x) = ax + b any linear function with a =/= 0,\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and take f(x) = g(x) as the same function.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then you will have the desired identity.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "More generally, you can take g(x) as any monotonic one-to-one function g: R ---> R defined over all real numbers;\r \n" ); document.write( "\n" ); document.write( "for example, g(x) = x^3; or g(x) = x^5; or g(x) = x^7, and so on . . . \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and take f(x) = g(x).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then, again, you will have the desired identity.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |