document.write( "Question 1160923: Given p(B)=0.5 and p(AuB')=0.8. What is the value of p(A/B)?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #784560 by ikleyn(52794)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "Note that the complement to (A U B') is (A' ∩ B).\r\n" ); document.write( "\r\n" ); document.write( "Therefore, P(A' ∩ B) = 1 - P(A U B') = 1 - 0.8 = 0.2.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Next, (A' ∩ B) U (A ∩ B) = B, and the sets (A' ∩ B) and (A ∩ B) are disjoint.\r\n" ); document.write( "\r\n" ); document.write( "Therefore, P(A' ∩ B) + P(A ∩ B) = P(B), or\r\n" ); document.write( "\r\n" ); document.write( " 0.2 + P(A ∩ B) = 0.5,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "which implies P(A ∩ B) = 0.5 - 0.2 = 0.3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Hence, by the definition of the conditional probability, \r\n" ); document.write( "\r\n" ); document.write( " P(A | B) = P(A ∩ B) / P(B) =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |