document.write( "Question 1160923: Given p(B)=0.5 and p(AuB')=0.8. What is the value of p(A/B)?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #784560 by ikleyn(52794)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Note that the complement to  (A U B')  is  (A' ∩ B).\r\n" );
document.write( "\r\n" );
document.write( "Therefore, P(A' ∩ B) = 1 - P(A U B') = 1 - 0.8 = 0.2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next,        (A' ∩ B) U  (A ∩ B) = B,  and the sets  (A' ∩ B) and  (A ∩ B)  are disjoint.\r\n" );
document.write( "\r\n" );
document.write( "Therefore,  P(A' ∩ B) + P(A ∩ B) = P(B),   or\r\n" );
document.write( "\r\n" );
document.write( "              0.2     + P(A ∩ B) = 0.5,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "which implies  P(A ∩ B) = 0.5 - 0.2 = 0.3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, by the definition of the conditional probability, \r\n" );
document.write( "\r\n" );
document.write( "           P(A | B) = P(A ∩ B) / P(B) = \"0.3%2F0.5\" = 0.6.    ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );