document.write( "Question 1160443: Use the distance formula to find an equation of the perpendicular bisector of the line segment between the points (4,3) and (-2,5) \n" ); document.write( "
Algebra.Com's Answer #783772 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Let (x,y) be the current point on the perpendicular bisector.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Its distance from the point (4,3) is  \"sqrt%28%28x-4%29%5E2%2B%28y-3%29%5E2%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Its distance from the point (-2,5) is  \"sqrt%28%28x%2B2%29%5E2%2B%28y-5%29%5E2%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The distances are equal\r\n" );
document.write( "\r\n" );
document.write( "    \"sqrt%28%28x-4%29%5E2%2B%28y-3%29%5E2%29\" = \"sqrt%28%28x%2B2%29%5E2%2B%28y-5%29%5E2%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Square both sides\r\n" );
document.write( "\r\n" );
document.write( "    (x-4)^2 + (y-3)^2 = (x+2)^2 + (y-5)^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Simplify\r\n" );
document.write( "\r\n" );
document.write( "    x^2 - 8x + 16 + y^2 - 6y + 9 = x^2 + 4x + 4 + y^2 - 10y + 25\r\n" );
document.write( "\r\n" );
document.write( "    -8x - 4x + (-6y + 10y) = 4 + 25 - 16 - 9\r\n" );
document.write( "\r\n" );
document.write( "    -12x + 4y = 4\r\n" );
document.write( "\r\n" );
document.write( "     3x - y = -1.     ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );