document.write( "Question 1159546: The function f is given by f(x)=x^3+2x^2+ax-8 where a is constant.when f(x) is divided by (x-2) the remainder is -6.
\n" );
document.write( "Show that (x+1) is a factor of f(x) \n" );
document.write( "
Algebra.Com's Answer #782590 by ikleyn(52786)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "According to the Remainder theorem, the fact that the remainder is -6, when f(x) is divided by (x-2), means that f(2) = -6.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In other words, \r\n" ); document.write( "\r\n" ); document.write( " 2^3 + 2*2^2 + a*2 - 8 = -6.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It implies\r\n" ); document.write( "\r\n" ); document.write( " 2a = -6 - 2^3 - 2*2^2 + 8 = -14.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Hence, a = -14/2 = -7. \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus the polynomial f(x) is\r\n" ); document.write( "\r\n" ); document.write( " f(x) = x^3 + 2x^2 - 7x - 8. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now, let us check that f(-1) = 0.\r\n" ); document.write( "\r\n" ); document.write( "For it, substitute x= -1 into the polynomial (1). You will get\r\n" ); document.write( "\r\n" ); document.write( " f(-1) = (-1)^3 + 2*(-1)^2 - 7*(-1) - 8 = -1 + 2 + 7 - 8 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now apply the Remainder theorem again.\r\n" ); document.write( "\r\n" ); document.write( "It says that if f(-1) = 0, then f(x) is divisible by the binomial (x-(-1)) = (x+1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It is EXACTLY what has to be proved.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The proof is completed.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "The problem is Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Theorem (the remainder theorem)\r \n" ); document.write( "\n" ); document.write( " 1. The remainder of division the polynomial \n" ); document.write( "\n" ); document.write( " 2. The binomial \n" ); document.write( "\n" ); document.write( " 3. The binomial \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "See the lessons\r \n" ); document.write( "\n" ); document.write( " - Divisibility of polynomial f(x) by binomial x-a and the Remainder theorem\r \n" ); document.write( "\n" ); document.write( " - Solved problems on the Remainder thoerem\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \n" ); document.write( "\"Divisibility of polynomial f(x) by binomial (x-a). The Remainder theorem\".\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this online textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-I \n" ); document.write( "https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "to your archive and use it when it is needed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |