document.write( "Question 1159515: Find k such that the matrix, M =
\n" );
document.write( "[-3, 0, -3]
\n" );
document.write( "[3, 2, 5]
\n" );
document.write( "[-6+k, -2, -11]
\n" );
document.write( "is singular. \n" );
document.write( "
Algebra.Com's Answer #782559 by ikleyn(52805)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "Let the rows of the given matrix be E1, E2 and E3, counting from the top to the bottom.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Notice that the row 2E1 - E2 is equal to\r\n" ); document.write( "\r\n" ); document.write( " [-9, -2, -11].\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It will be exactly equal to the third row, E3, if -9 = -6+k, i.e. k= -3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then the determinant of the matrix will be zero.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. k = -3.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |