document.write( "Question 1159348: I do not understand these problems...\r
\n" ); document.write( "\n" ); document.write( "An arrow is shot upward at an initial velocity of 40 meters per second. Use the function: h=40t-5t^2 to answer the following questions:\r
\n" ); document.write( "\n" ); document.write( "1).what is the height of the arrow in meters after 5 seconds? Solve algebraically. Show Work.\r
\n" ); document.write( "\n" ); document.write( "2). After how many seconds will the arrow be 30 meters high? Use the quadratic formula. Show work.\r
\n" ); document.write( "\n" ); document.write( "3). when will the arrow be back on the ground? solve algebraically using factoring. Show work.\r
\n" ); document.write( "\n" ); document.write( " Thank you for your help
\n" ); document.write( "

Algebra.Com's Answer #782353 by MathLover1(20849)\"\" \"About 
You can put this solution on YOUR website!
given the function: \r
\n" ); document.write( "\n" ); document.write( "\"h=40t-5t%5E2\" \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "1).what is the height of the arrow in meters after \"5\" seconds?\r
\n" ); document.write( "\n" ); document.write( "\"h=40t-5t%5E2\" ........if \"t=5\" seconds\r
\n" ); document.write( "\n" ); document.write( "\"h=40%2A5-5%2A5%5E2\"
\n" ); document.write( "
\n" ); document.write( "\"h=200-125\" \r
\n" ); document.write( "\n" ); document.write( "\"h=75\" meters high\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2). After how many seconds will the arrow be \"30\" meters high? \r
\n" ); document.write( "\n" ); document.write( "\"h=40t-5t%5E2\" ........if \"h=30\" \r
\n" ); document.write( "\n" ); document.write( "\"30=40t-5t%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"5t%5E2-40t%2B30=0\"......simplify, divide by \"5\"\r
\n" ); document.write( "\n" ); document.write( "\"t%5E2-8t%2B6=0\".......use quadratic formula\r
\n" ); document.write( "\n" ); document.write( "\"t+=+%28-b+%2B-+sqrt%28+b%5E2-4%2Aa%2Ac+%29%29%2F%282%2Aa%29+\" \r
\n" ); document.write( "\n" ); document.write( "\"t+=+%28-%28-8%29+%2B-+sqrt%28+%28-8%29%5E2-4%2A1%2A6+%29%29%2F%282%2A1%29+\" \r
\n" ); document.write( "\n" ); document.write( "\"t+=+%288+%2B-+sqrt%2864-24%29%29%2F2+\" \r
\n" ); document.write( "\n" ); document.write( "\"t+=+%288+%2B-+sqrt%2840%29%29%2F2+\" \r
\n" ); document.write( "\n" ); document.write( "\"t+=+%288+%2B-+sqrt%284%2A10%29%29%2F2+\"\r
\n" ); document.write( "\n" ); document.write( " \"t+=+%288+%2B-+2sqrt%2810%29%29%2F2+\" .........simplify\r
\n" ); document.write( "\n" ); document.write( " \"t+=+%284+%2B-+sqrt%2810%29%29+\"\r
\n" ); document.write( "\n" ); document.write( "-> solutions:\r
\n" ); document.write( "\n" ); document.write( "\"t+=+%284+%2B+sqrt%2810%29%29+\"->\"t+=+7.16+\" seconds\r
\n" ); document.write( "\n" ); document.write( "\"t+=+%284+-+sqrt%2810%29%29+\"->\"t+=+0.84\" seconds\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so, it will ritch height of \"30\" meters in \"+0.84\" seconds and second time (on its way back) \"t+=+7.16+\" seconds\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3). when will the arrow be back on the ground? \r
\n" ); document.write( "\n" ); document.write( "the arrow be back on the ground when \"h=0\"\r
\n" ); document.write( "\n" ); document.write( "\"0=40t-5t%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"0=5t%288-t%29\"\r
\n" ); document.write( "\n" ); document.write( "->\"5t=0\"->when \"t=0\"...this is start position\r
\n" ); document.write( "\n" ); document.write( "->\"8-t=0\"->when \"t=8\"-> it will take \"8\" seconds for the arrow to be back on the ground\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );