document.write( "Question 1159126: D ⊃ (F • S) / (B ⊃ D) ⊃ (B ⊃ S)\r
\n" );
document.write( "\n" );
document.write( "I want to use a conditional proof to prove this answer using the given premise. I don't know where to start. Should I assume D? \n" );
document.write( "
Algebra.Com's Answer #782125 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( " D ⊃ (F • S) / (B ⊃ D) ⊃ (B ⊃ S)\r\n" ); document.write( "\r\n" ); document.write( "This one is a little different. We first find a conditional statement which is\r\n" ); document.write( "equivalent to the conclusion. Then we do a conditional proof on the equivalent\r\n" ); document.write( "statement and then the conclusion will follow.\r\n" ); document.write( "\r\n" ); document.write( "Exportation says that p ⊃ (q ⊃ r) and (p • q) ⊃ r are equivalent. Let's\r\n" ); document.write( "substitute (B ⊃ D) for p, B for q, and S for r. Then we have this\r\n" ); document.write( "\r\n" ); document.write( " (B ⊃ D) ⊃ (B ⊃ S) <=> [(B ⊃ D) • B] ⊃ S\r\n" ); document.write( "\r\n" ); document.write( "Now we know what to assume, which is the left side of the equivalent\r\n" ); document.write( "statement to the conclusion: (B ⊃ D) • B\r\n" ); document.write( "\r\n" ); document.write( " 1. D ⊃ (F • S) / (B ⊃ D) ⊃ (B ⊃ S) \r\n" ); document.write( "\r\n" ); document.write( " | 2. (B ⊃ D) • B Assumption for conditional proof\r\n" ); document.write( " | 3. B ⊃ D 2, simplification\r\n" ); document.write( " | 4. B • (B ⊃ D) 2, commutation\r\n" ); document.write( " | 5. B 4, simplification\r\n" ); document.write( " | 6. D 3,5, modus ponens\r\n" ); document.write( " | 7. F • S 1,6, modus ponens\r\n" ); document.write( " | 8. S • F 7, commutation\r\n" ); document.write( " | 9. S 8, simplification\r\n" ); document.write( "10. [(B ⊃ D) • B] ⊃ S lines 2--9 by conditional proof\r\n" ); document.write( "11. (B ⊃ D) ⊃ (B ⊃ S) 10, exportation\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |