document.write( "Question 1158926: Find the number of positive integers n, , for which the polynomial
can be factored as the product of two linear factors with integer coefficients. \n" );
document.write( "
Algebra.Com's Answer #781936 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "\r\n" ); document.write( "The factorization of x² + x - n must be in the form\r\n" ); document.write( "\r\n" ); document.write( "(x - p)(x + q) where p and q are positive integers.\r\n" ); document.write( "\r\n" ); document.write( "We must have this identity for all values of x:\r\n" ); document.write( "\r\n" ); document.write( " x² + x - n = (x - p)(x + q)\r\n" ); document.write( " x² + x - n = x² + qx - px - pq\r\n" ); document.write( " x² + x - n = x² + (q - p)x - pq\r\n" ); document.write( "\r\n" ); document.write( "So q - p = 1\r\n" ); document.write( " pq = n\r\n" ); document.write( "\r\n" ); document.write( " q = p + 1\r\n" ); document.write( "\r\n" ); document.write( " p(p+1) = n\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |