document.write( "Question 1157934: Given function p and t defined by the table below
\n" );
document.write( "\r\n" );
document.write( " x, -2, -1, 0, 1, 2\r\n" );
document.write( "p(x), 4, 1, 0, 1, 4\r\n" );
document.write( "t(x), 3, 2, 1, -2, -3\r\n" );
document.write( "\r\n" );
document.write( "Find\r\n" );
document.write( "1. t(p(-1))\r\n" );
document.write( "2. (t∘p)(0)\r\n" );
document.write( "3 (p∘t)(-1)\r\n" );
document.write( "4. t(t(0))\r\n" );
document.write( "5. P(t(2))
\n" );
document.write( "
Algebra.Com's Answer #780872 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! Given function p and f defined by the table below: \n" ); document.write( " \r\n" ); document.write( " x | -2, -1, 0, 1, 2\r\n" ); document.write( "-------------------------\r\n" ); document.write( "p(x) | 4, 1, 0, 1, 4\r\n" ); document.write( "t(x) | 3, 2, 1, -2, -3\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "1. t(p(-1)) = t(1) = -2\r\n" ); document.write( "\r\n" ); document.write( "2. (t∘p)(0) = t(p(0)) = t(0) = 1 \r\n" ); document.write( "\r\n" ); document.write( "3 (p∘t)(-1) = ? = ? = ?\r\n" ); document.write( "\r\n" ); document.write( "4. t(t(0)) = ? = ?\r\n" ); document.write( "\r\n" ); document.write( "5. P(t(2)) = ? = ?\r\n" ); document.write( "\r\n" ); document.write( "You do 3,4, and 5. It's just a matter of looking in the table,\r\n" ); document.write( "and doing exactly what I did in the first two.\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |