document.write( "Question 1157927: Determine , if r, s, and t are the three real roots of the polynomial
. \n" );
document.write( "
Algebra.Com's Answer #780826 by ikleyn(52788)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Determine \n" ); document.write( "~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "(r+s)(s+t)(r+t) = ((r + s + t)-t) * ((s + t + r) - r) * ((r + t + s) - s) =\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " In the last three factors, replace r+s+t by -9 (the value opposite to the coefficient at x^2).\r\n" ); document.write( " Then continue the equality\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "= (-9-t)*(-9-r)*(-9-s) = -(9+t)*(9+r)*(9+s) = \r\n" ); document.write( "\r\n" ); document.write( "= -(81 + 9t + 9r + tr)*(9+s) = -(729 + 81t + 81r + 9tr + 81s + 9ts + 9rs + trs) = \r\n" ); document.write( "\r\n" ); document.write( "= -(729 + 81*(t + r + s) + 9*(tr + ts + rs) + trs) = \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " In the last expression, replace (t+r+s) by -9 (the value opposite to the coefficient at x^2);\r\n" ); document.write( " \r\n" ); document.write( " replace (tr + ts + rs) by -9 (the value of the coefficient at x),\r\n" ); document.write( "\r\n" ); document.write( " and replace trs by 8 (the value opposite to the coefficient at the constant term of the polynomial, by Vieta's theorem). \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " You can continue then in this way\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "= -(729 + 81*(-9) + 9*(-9) + 8) = 73. ANSWER\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |