document.write( "Question 1157025: Please help me list the directions,vertex, axis of symmetry, table of 5 points, graph ?
\n" ); document.write( "1.F(x)= (x-6)^2+2\r
\n" ); document.write( "\n" ); document.write( "2. F(x) = x^2-2x-5
\n" ); document.write( "

Algebra.Com's Answer #779814 by MathLover1(20849)\"\" \"About 
You can put this solution on YOUR website!
graphing the following and listing the directions,vertex,axis of symmetry,table with \"5\" points and the graph for this equation\r
\n" ); document.write( "\n" ); document.write( "\"f%28x%29=%28x-6%29%5E2%2B2\"\r
\n" ); document.write( "\n" ); document.write( "from given formula you see that \"h=6\" and \"k=2\", so vertex is at (\"6\",\"2\")\r
\n" ); document.write( "\n" ); document.write( "so, we have one point for a graph\r
\n" ); document.write( "\n" ); document.write( "For a parabola in standard form:\"y=ax%5E2%2Bbx%2Bc\"
\n" ); document.write( "the axis of symmetry is the \"vertical\" line that goes through the vertex
\n" ); document.write( "\"x=+-b%2F2a\"\r
\n" ); document.write( "\n" ); document.write( "in your case, \"x\" coordinate of the vertex is \"6\"=:the \"vertical\" line that goes through the vertex
\n" ); document.write( "\"x=+6\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "directrix:\r
\n" ); document.write( "\n" ); document.write( "\"4p+%28y-k+%29=+%28x-h+%29%5E2\" is the standard equation for an up-down facing parabola with vertex at (\"h\", \"k+\") and a focal length\"+abs%28p%29\"\r
\n" ); document.write( "\n" ); document.write( "Rewrite \"y=+%28x-6+%29%5E2%2B2\" in the standard form:
\n" ); document.write( "
\n" ); document.write( "\"4p%28y-2+%29=+%28x-6+%29%5E2\".....since \"4p=1\"=>\"p=1%2F4\"\r
\n" ); document.write( "\n" ); document.write( "\"y=2-p\"
\n" ); document.write( "\"y=2-1%2F4\"
\n" ); document.write( "\"y=8%2F4-1%2F4\"
\n" ); document.write( "\"y=7%2F4\"\r
\n" ); document.write( "\n" ); document.write( "table:\r
\n" ); document.write( "\n" ); document.write( "\"x\"|\"y\"
\n" ); document.write( "\"6\"|\"2\"
\n" ); document.write( "\"5\"|\"3\"
\n" ); document.write( "\"4\"|\"6\"
\n" ); document.write( "\"7\"|\"3\"
\n" ); document.write( "\"8\"|\"6\"\r
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2.
\n" ); document.write( "\"F%28x%29+=+x%5E2-2x-5\".....write in vertex form\r
\n" ); document.write( "\n" ); document.write( "\"F%28x%29+=+%28x%5E2-2x%2Bb%5E2%29-b%5E2-5\"\r
\n" ); document.write( "\n" ); document.write( "\"F%28x%29+=+%28x%5E2-2x%2B1%5E2%29-1%5E2-5\"
\n" ); document.write( "\"F%28x%29+=+%28x-1%29%5E2-6\"\r
\n" ); document.write( "\n" ); document.write( "vertex | (\"1\", \"-6\")\r
\n" ); document.write( "\n" ); document.write( "compare to\"4p+%28y-k+%29=+%28x-h+%29%5E2\"=>\"4p=1\"=>\"p=1%2F4\"
\n" ); document.write( "\"y=-6-p\"
\n" ); document.write( "\"y=-6-1%2F4\"
\n" ); document.write( "\"y=-25%2F4\"
\n" ); document.write( "directrix: \"y+=+-25%2F4\"\r
\n" ); document.write( "\n" ); document.write( "axis of symetry:the \"vertical\" line that goes through the vertex
\n" ); document.write( "\"x=+1\"\r
\n" ); document.write( "\n" ); document.write( "table:\r
\n" ); document.write( "\n" ); document.write( "\"x\"|\"y\"
\n" ); document.write( "\"1\"|\"-6\"
\n" ); document.write( "\"2\"|\"-5\"
\n" ); document.write( "\"3\"|\"-2\"
\n" ); document.write( "\"4\"|\"3\"
\n" ); document.write( "\"0\"|\"-5\"\r
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );