document.write( "Question 1156688: When pumps, A, B, and C are running together, they can all pump 3700 gallons per hour. When only A and B are running, 2200 gallons per hour can be pumped. When only A and C are running, 2400 gallons per hour can be pumped. What is the pumping capacity of each pump? \n" ); document.write( "
Algebra.Com's Answer #779425 by ikleyn(52847)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "From the condition, you have these 3 equations\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " A + B + C = 3700 (1)\r\n" ); document.write( "\r\n" ); document.write( " A + B = 2200 (2)\r\n" ); document.write( "\r\n" ); document.write( " A + C = 2400 (3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "To find C, from equation (1) subtract equation (2) : C = 3700-2200 = 1500 gallons per hour.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "To find B, from equation (1) subtract equation (3) : B = 3700-2400 = 1300 gallons per hour.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "To find A, substitute the value of B= 1300 into equation (2)\r\n" ); document.write( "\r\n" ); document.write( " A + 1300 = 2200, which gives you A = 2200 - 1300 = 900 gallons per hour.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |